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Abstract.  We consider interference fluxes of energy, momentum 
and angular momentum, describing the interaction of electric 
charges with constant and variable electromagnetic fields. Absorption 
and stimulated emission of atoms in the field of free and evanescent 
waves are described. It is shown that in the case of interaction with 
reactive fields, the momentum of an atom during absorption and 
stimulated emission does not change. A wave derivation of Planck’s 
formula based on the interference of the fields of classical thermal 
radiation and quantum zero-point oscillations is presented.

Keywords: electromagnetic field, interference, absorption and stim-
ulated emission of atoms, thermal radiation.

1. Introduction

In classical electrodynamics, conservation laws for a system 
of electric charges in an external electromagnetic field are for-
mulated using energy, momentum and angular momentum 
fluxes passing through a closed surface surrounding this sys-
tem. The fluxes that change the dynamic characteristics of the 
charges are interference ones, since they depend both on the 
external field and on the field of the charges themselves. The 
properties of such interference fluxes (IFs) arising in the total 
field can differ markedly from the properties of fluxes in orig-
inal interfering fields.

The IF calculations presented in this work show that they 
can be used to describe such diverse physical phenomena as 
the Coulomb interaction of charges, the exchange of energy, 
momentum and angular momentum between charges and a 
constant electric field, the lateral shift of a light beam during 
its total internal reflection, direction of elementary acts of 
interaction of atoms with fields of free and evanescent waves, 
nonradiative energy transfer between atoms, and absorption 
and stimulated emission of atoms without changing their 
momentum.

To calculate the IFs, it is necessary to use all the elements 
of the energy-momentum tensor of the electromagnetic field, 
which significantly expands the concept of traditional phe-
nomena of second-order interference in the field and allows 
one to interpret interference as a mechanism for the forma-
tion of a new quality in linear systems.

2. Complete set of quantities required 
to describe interference

Let a superposition of two harmonic waves with given same 
frequency electromagnetic fields Е1, Н1 and Е2, Н2 forming a 

certain interference pattern be produced in a vacuum. Here 
Е1, 2 and Н1, 2 are the vectors of the intensity of the electric and 
magnetic fields, respectively. Let us introduce the oscillation 
period-averaged interference densities of energy,

( )Rew E E H H8
1 * *int

1 2 1 2p= + ,	 (1)

momentum,

([ ] [ ])Recp E H E H8
1 * *int

1 2 2 1p= + ,	 (2)

and angular momentum,

[ ]m rpint int= .	 (3)

Here с is the speed of light in vacuum, and r is the radius vec-
tor drawn from an arbitrary point to the observation point.

According to Maxwell’s equations, when use is made of 
quasi-monochromatic waves, the first time derivatives t of 
quantities (1) – (3) in a region of volume V bounded by a 
closed surface F have the form

d
d d dt w V S Fint int

i i= -
FV

y y ,	 (4)

( )d
d d dt p V Fint int

i ik ks= - -
FV

y y ,	 (5)

( )d
d d dt m V e r Fint int

i ijk j kl ls= - -
FV

y y ,	 (6)

where dFi = dFni; dF is the area of an infinitesimal element 
of the surface; n is the unit outward normal vector to the 
surface; eijk is a unit antisymmetric tensor of the third rank; 
and i, j, k, l = x, y, z. Summation is performed over the 
repeated indices. On the right-hand sides of (4) – (6) with the 
‘minus’ sign, there are IFs of energy (4), momentum (5) and 
angular momentum (6), which are determined using the 
time-averaged Poynting interference vector

8 ([ ] [ ])RecS E H E H* *int
1 2 2 1p= + 	 (7)

and interference Maxwell’s stress tensor

[Re E E E E H H8
1 * * *int

ik i k i k i k1 2 2 1 1 2ps = + +

	 ( )]H H E E H H* * *
i k ik2 1 1 2 1 2d+ - + ,	 (8)

where dik is the Kronecker symbol. Equations (4) – (6) describe 
the dynamics of the spatial redistribution of energy, momen-
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tum and angular momentum of interfering fields, which is 
determined by the corresponding IF. For stationary fields in 
vacuum, all IFs through an arbitrary closed surface are equal 
to zero. If the area of the spatial overlap of waves is limited, 
then the lines of stationary IFs are closed.

Expressions (1) – (8) form a complete set of quantities 
quadratic in the field, sufficient to describe all possible sec-
ond-order interference phenomena [1]. They contain terms 
of the form ,E E H H1

* *
i j i j2 1 2  and E H1

*
i j2 , which determine the 

interference between different components of not only elec-
tric or magnetic fields, but also between different compo-
nents of electric and magnetic fields. Due to this, the inter-
ference is not limited only to the spatial redistribution of 
energy, momentum and angular momentum.

As an example, we consider the superposition of two eva-
nescent TE and TM waves propagating along the x axis and 
exponentially decaying along the y axis:

E1 = (0, 0, A1)exp[– hy + i(kxx – wt)],

, ,0i k
h A k

k
AH x

1 1 1= -d nexp[– hy + i(kxx – wt)],	

(9)

, ,0i k
h A k

k
AE x

2 2 2= -d nexp[– hy + i(kxx – wt)],

H2 = (0, 0, A2)exp[– hy + i(kxx – wt)],	

(10)

where А1 and А2 are the complex amplitudes; kx > k = w/c; 
w is the frequency of the waves; and h k k2x

2= - . The 
equality Е1Е2 = H1H2 = 0 holds true for waves (9) and (10); 
therefore, they cannot form an ordinary interference pat-
tern.

In this case, there is interference between the components 
of the electric and magnetic fields of waves (9) and (10). This 
leads to the formation of an IF of energy in the direction of 
the z axis, which is described by a nonzero interference com-
ponent of the Poynting vector of the total field [2]

( 2 ) ( )exp sinS
k

ck h
A A hy

4z
int x

2 1 2 1 2p
j j= - - ,	 (11)

if the phase difference n1 2 ! pj j-  (n = 0, ±1, ±2, ...) for 
the quantities А1 and А2. Note that the fluxes of energy 
transferred by waves (9) and (10) separately are directed 
along the x axis and are additive. Consequently, the forma-
tion of an IF of energy along the z axis cannot be consid-
ered as a result of the spatial redistribution of energy fluxes 
of wave (9) and (10).

A superposition of evanescent waves (9) and (10) is formed 
in a vacuum under total internal reflection of an elliptically 
polarised light beam, which is incident from a transparent 
medium with a refractive index greater than unity onto the 
flat surface y = 0 of the medium – vacuum interface occupy-
ing the half-space y > 0. The IF of energy is perpendicular to 
the xy plane of incidence of the beam and leads to a lateral 
shift of the reflected beam, which, as a result, leaves the plane 
of incidence [2].

3. IFs in constant electric fields

The presence of electric charges radically changes the proper-
ties of the IFs, for which these charges become either sources 

or drains. Consider an electric field in vacuum produced by 
two stationary point charges q1 and q2,

q
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2= + = + .	 (12)

Here r1 and r2 are radius vectors drawn from charges q1 and 
q2 to the observation point, respectively. For a field of a single 
charge, the momentum density and momentum flux through 
an arbitrary closed surface surrounding the charge are equal 
to zero.

For field (12), the momentum density is still equal to 
zero, but there arises an IF of the momentum, which 
describes the Coulomb interaction of charges. If charges q1 
and q2 are located on the x axis at the points x1 = – l/2 and 
x2 = l /2, then the IF of the momentum px to charge q2 
through the plane x = 0 has the form

3

3
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and is equal to zero for any plane x = const > l/2. Therefore, 
the IF of the momentum px through an arbitrary closed sur-
face surrounding charge q2 is equal to (13). It determines the 
Coulomb force (taken with the opposite sign) acting on 
charge q2, which becomes the drain for the IF of the momen-
tum px.

The interference component of the energy W int is equal to 
the potential energy of the Coulomb interaction of two point 
charges q1 and q2 in vacuum [1]:
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yyy 	 (14)

When charges move along the x axis under the action of 
Coulomb forces, as can be seen from (13) and (14), the 
increment in their kinetic energy is equal to the decrease 
in the interference component of the total electric field 
energy (14).

A moving charge produces a magnetic field, with the 
help of which an IF of energy arises, describing a change 
in the interference component of energy [3]. Let there be a 
charged empty capacitor formed by two infinite metal 
plates located in the planes x1 = – l/2 and x2 = l/2. A 
point charge q moves along the x axis under the action of 
the capacitor’s electric field Е = (Е, 0, 0). The interfer-
ence component of the energy of the total field of the 
capacitor and the charge at the charge rate uq << c has the 
form

dW VEE4
1int

qp= y
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where Eq and xq are the electric field and the coordinate of 
the charge, respectively [1]. Quantity (15) is the potential 
energy of the charge q in the constant electric field of the 
capacitor.

The IF of the momentum px to charge q through two 
planes x = ± l/2 is described by the expression

2 ( / )d dI l y z2int int
p xxx

s= -
3-

3yy , 

	
d dqEl
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y z

qE4 3p= - = -
3-

3yy ,	 (16)

where /r l y z42 2 2= + +  is equal to the IF of the momen-
tum px through an arbitrary closed surface surrounding the 
charge inside the capacitor, and the force taken with the 
opposite sign acting on the charge [1]. Hence it follows that 
the charge is a drain for the IF of the momentum px. Note 
that the momentum density for the total electric field inside 
the capacitor is zero. The IF of the momentum px to the 
capacitor plates is equal to qE, and the momentum is 
exchanged between the charged capacitor plates and the 
charge q.

The kinetic energy eq of the charge as it moves along the x 
axis under the action of the electric field of the capacitor 
increases due to a decrease in the interference energy (15) of 
the total electric field. Differentiating W int with respect to 
time, we obtain

d
d

d
d

t
W qE t

int

q
q

u
e

- = = . 	 (17)

If the charge q is surrounded in a capacitor by an arbitrary 
closed surface, the increment of its kinetic energy is deter-
mined by two factors: a decrease in the interference energy 
inside the selected area and the IF of energy, which describes 
a decrease in the interference energy outside the selected 
area [3].

Let us assume that inside the capacitor on the x axis at 
point x = 0 there is a constant electric dipole with the moment 
d, lying in the xz plane. The IF of the angular momentum My 
relative to the y axis for the total electric field of a point dipole 
and a capacitor to the dipole through two planes x = ± l/2 [1] 
has the form

2 ( / )d dI z l y z2int int
M xxy
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3yy
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where j is the angle between the x axis and the vector d, and 
/ .r l y z42 2 2= + +  The IF of the angular momentum 

through an arbitrary closed surface bounding the dipole is 
(18). It determines the moment of forces, taken with the oppo-
site sign, acting on the dipole, which is the drain for the IF of 
the angular momentum My.

The density of the angular momentum for the total field 
in the capacitor is zero and, therefore, the exchange of the 
angular momentum is carried out between the dipole and 
the charged plates of the capacitor. Thus, constant electric 
fields in a capacitor with zero momentum and angular 

momentum densities nevertheless produce interference fluxes 
of momentum and angular momentum.

The interference component of the electric field energy in 
a capacitor 

dW VEE4
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where Ed is the electric field of the dipole, is the potential 
energy of the dipole in the electric field of the capacitor. If the 
dipole can freely rotate under the action of the moment of 
forces Mdy around the y axis, then the increment of its kinetic 
energy, as seen from (18) and (19), is equal to the decrease in 
the energy W int.

The examples considered show that the formation and 
change in the interference pattern for constant electric 
fields are associated either with the work on the move-
ment of charges, or with the mutual transformation of the 
energy of the electric field and the kinetic energy of the 
charges.

4. Interference in the processes of absorption 
and stimulated emission of an atom

In 1972, the amplification of light was experimentally 
observed when it is totally reflected from a medium with an 
inverted population of atoms [4]. In this regard, it generated a 
need for generalising the laws of stimulated emission of an 
atom for the case of its interaction with the field of evanescent 
waves (9) and (10). The solution of this problem turned out to 
be possible in the framework of classical electrodynamics 
with the help of IFs of energy and momentum without quan-
tising evanescent waves [5, 6].

Let us first consider the incidence of a plane monochro-
matic wave with frequency w, which propagates in vacuum 
along the x axis and is polarised along the z axis, on an atom. 
The wave field 

E = (0, 0, A)exp[i(kx – wt)],	

H = (0, –A, 0)exp[i(kx – wt)],	

(20)

where A is the complex amplitude, induces the electric dipole 
moment 

d = a(w)E = d0exp(– iwt),	 (21)

in an atom located at a point with coordinates x = y = z = 0, 
where a(w) = a'(w) + ia''(w) is the polarisability of the atom; 
a'(w) and a''(w) are real functions of frequency w; and d0 = 
a(w)A is the complex amplitude of dipole oscillations along 
the z axis.

In a spherical coordinate system, the field of a point dipole 
(21) is represented in the form:

2cos iE
k r kr r

k d1
dr 2 2

2
0q= -d n exp[i(kr – wt)],	 (22)
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sin iE
k r kr r

k d1 1d 2 2

2
0q= - -i d n exp[i(kr – wt)],	 (23)

sin iH kr r
k d

1d

2
0q= - -{ d n exp[i(kr – wt)].	 (24)

Here Edj = Hdr = Hdq = 0; r is the radius vector drawn 
from the dipole to the observation point; q is the angle 
between the z axis and the vector r; and j is the angle 
between the x axis and the projection of the vector r onto 
the xy plane.

The wave-field and dipole-field produced IF of energy, 
arriving at the atom through the plane x = x1, is

( ) Re d dI x S y zint int
w x1 =

3-

3yy

	 ( )Re d dc E H E H y z8
* *

z zdy d yp= +
3-

3yy

	 2
1= -  a''w|A|2,	 (25)

if x1 > 0, and equal to zero if x1 < 0 [5]. For an absorbing 
atom, a'' > 0��������������������������������������������         , and the negative IF of energy (25) is sub-
tracted from the wave energy flux (20). In the case of an 
excited atom, a'' < 0�������������������������������������������, and a positive IF of energy (25) describ-
ing the induced emission of the atom is added to the wave 
energy flux (20).

The IF of energy through an arbitrary closed surface 
bounding an atom is equal to (25); therefore, an absorbing 
atom is a drain for this flux, and an excited atom is a source. 
Such ‘focusing’ of the IF of energy to the point of location of 
the atom is due to the unlimited growth of the field of the 
point dipole at r ® 0.

For a closed surface of any area, the ratio of the IF of 
energy (25) for the absorbing atom to the energy flux density 
of the incident wave (20), taken with the opposite sign, is the 
effective absorption cross section of the atom at frequency w, 
regardless of the size of the atom [7]. In the general case, the 
effective absorption cross section does not determine the area 
of the main localisation of the IP of energy on a closed sur-
face, which depends on the shape and size of this surface.

The IF of momentum px arriving at the atom through the 
plane x = x1 is

( ) d dI x y zint int
p xx1x

s= -
3-

3yy

	 ( )d dE E H H y z8
1

2
1* *

z zd y dyp= + = -
3-

3yy a'’k|A|2,	 (26)

if x1 > 0, and equal to zero if x1 < 0 [6]. The absorbing atom 
receives the momentum px > 0, and the excited atom under 
stimulated emission receives the momentum px < 0. Therefore, 
for I intpx  , the absorbing atom is a drain, and the excited atom 
is a source.

Expressions (20), (25) and (26) yield the equalities 

I
I S

k cint

int

p

w

xx

x

x
'
'

s
w= = =- ,	 (27)

where Sx and – sxx are, respectively, the flux densities of 
energy and momentum px in the direction of the x axis for 

wave (20); and 'w  and k'  are, respectively, the photon 
energy and momentum of wave (20). Thus, the description 
of the spatial directionality of the processes of absorption 
and stimulated emission of an atom by the methods of clas-
sical electrodynamics is consistent with the results of quan-
tum theory.

Let us consider the interaction of an atom with the field 
of an evanescent wave (9), which arises during total inter-
nal reflection on the surface y = 0 of the vacuum (y > 0) – 
transparent medium (y < 0) interface. Let an atom be 
located at a point with coordinates x = 0, y = l, z = 0. The 
IF of energy, momentum px, parallel to the interface 
between two media, and momentum py, perpendicular to 
the interface between two media, through the plane y = y1 
have the form

I 2
1int

w = - a''w|A|2exp(–2hl),	 (28)

I 2
1int

px
= - a''kx|A|2exp(–2hl),	 (29)

I 2
1int

py
= a'h|A|2exp(–2hl),	 (30)

if 0 < y1 < l, and are equal to zero if y1 > l [5, 6].
For an absorbing atom, the IF of energy is directed 

along the y axis from the interface between two media to the 
atom receiving energy from the wave incident on this sur-
face. For an excited atom, the IF of energy is directed along 
the y axis from the atom to the interface between two media 
and amplifies the reflected wave due to the stimulated emis-
sion of the atom. In contrast to the case of wave (20), the 
energy is now transferred perpendicular to the direction of 
propagation of the evanescent wave and the transferred 
momentum px.

The IF of momentum py is independent of a'' and deter-
mines the time-averaged gradient force acting on the induced 
dipole in an alternating electromagnetic field, the amplitude 
of which depends on the coordinates [8].

According to (9), (28) and (29),
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k
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!
w

s= =
-

,	 (31)

where Sx and – sxx are, respectively, the flux densities of 
energy and momentum px in the direction of the x axis for 
the evanescent wave. From (28), (29), and (31) it can be 
seen that the atom receives energy and momentum px from 
a wave incident on the interface between two media, and 
the evanescent wave only ensures their transfer to the 
atom.

The calculation and measurements of the momentum 
received by the absorbing atom, which moves in the direction 
of propagation of the evanescent wave and interacts with its 
field, were performed in [9]. In the limiting case of zero atomic 
velocity, the results of [9] agree with relations (31).

In the superposition of evanescent waves (9) and (10), 
there arises the IF of angular momentum through the plane 
y = y1, which, under the condition A2 = ± iA, is described by 
the formulae

0,
I

I
k
k I

I

I
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int

int
int
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int

w

M
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w

M

x

x

y

z
! w w= = = -, ,	 (32)
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if l < y1 < 0. For y1 > l, all IFs of angular momentum are equal 
to zero [6]. The IFs of energy, momentum and angular 
momentum calculated for the case of interaction of an atom 
with a plane elliptically polarised monochromatic wave are 
given in [6].

5. IF of energy and momentum between atoms

Let two identical atoms be located in vacuum on the x axis at 
points x1 = –l/2 and x2 = l/2. The first atom is excited and 
radiates spontaneously at frequency w as a point electric 
dipole d1 oscillating along the z axis with a complex amplitude 
d10. In the unexcited second atom, the electric field E1z of the 
dipole d1 induces the dipole moment

d2z = aE1z = l
k d2 10a-

	 i
k l kl
1 12 2# - -d nexp[i(kl – wt)] = d20exp(–iwt),	 (33)

where a is the complex polarisability of the atom, and d20 is 
the complex oscillation amplitude of the dipole d2.

The power of radiation absorbed by the dipole d2 is equal 
to the work done per unit time by the field E1z over the 
dipole d2,

( )ReN d E d
l l

k
l
k

2
1

2
1 1

2 1
*

z z2 10
2

6 4

2

2

4

a w= = - +llo d n,	 (34)

where the dot above the letter denotes the time derivative.
The IFs of energy to an unexcited atom through the planes 

x = x1 = 0 and x = x2 > l/2

(0) ( )Re iI
l l

k d d2
1 1

2
*int

w 3

2

10 20w= -d n 	 (35)

and

( ) (0)I x N Iint int
w w2 2= - - 	 (36)

are totally equal to the IFs of energy through an arbitrary 
closed surface bounding an unexcited atom, and they deter-
mine the radiation power absorbed by this atom, taken with 
the opposite sign. This particular result is consistent with the 
results of more general calculations performed in [10].

All components of the electromagnetic field (22) – (24) of 
the dipole participate in the formation of the total IF of 
energy. If the distance l between atoms is small and kl << 1, 
the IF of energy to the unexcited atom is localised on the 
plane x = 0,

(0) ( ) 0I
l
d

I x2
1int int

w w6
10
2

2a w= - =,ll ,	 (37)

and describes nonradiative energy transfer from an excited 
atom to an unexcited one [11]. This energy flux arises due to 
the interference of the reactive (nonradiative) components of 
the near field of the dipoles, which do not contribute to the 
dipole emission. Nonradiative energy transfer can be consid-
ered as a result of self-action of an excited atom through the 
near field of the induced dipole d2. Indeed, the work done by 
the near field E2z » d20/l3 of the induced dipole over the dipole 
d1 per unit time is equal to (0)I intw  from (37).

The time-averaged force with which the dipole field d1 acts 
on the induced dipole d2 is directed along the x axis and is 
described by the formula [8]

¶
¶

F x k d
l
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kE

4
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x
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2

10
2

4

2

2

4

a a= + - +l ll d n.	 (38)

The first term on the right-hand side of (38) is the gradient 
force not related to the atomic absorption. For kl << 1, this 
term is the time-averaged force Fx = –3a'|d10|2/(2l 7), which 
describes the attraction of two dipoles performing harmonic 
oscillations in antiphase along the z axis. It follows from (38) 
that in the case of nonradiative energy transfer and stimulated 
emission of the second atom, i.e. if kl << 1, the momentum of 
the atom does not change.

The IF of momentum px through an arbitrary closed 
surface bounding the unexcited atom is equal to the sum 
of the IFs of momentum px to this atom through the plane 
x = x1 = 0,

(0) ( )Re iI
l l

k d d
2
3 *int

p 4 2

2

10 20x
= - +d n ,	 (39)

and through the plane x = x2 > l/2,

( ) (0)I x F Iint int
p x p2x x

= - - .	 (40)

It determines the force taken with the opposite sign (38).
If the distance l between the atoms is large (kl >> 1), then 

the IFs of energy and momentum px through an arbitrary 
closed surface surrounding the second atom satisfy the equal-
ities

( )
( )

I
I S

k cr
r

int

int

p

w

rr

r

x
'
'

s
w= = =

-
,	 (41)

similar to equalities (27) for wave (20). Here Sr(r) and 
– srr(r) are, respectively, the flux densities of energy and radial 
momentum pr of radiation of the dipole d1 in the direction of 
the radius vector r, drawn from this dipole to the observation 
point.

If we assume that the radiation power of the first 
dipole decreases with time according to the exponential 
law (the case of weak attenuation), then the values of the 
IFs of energy and momentum decrease with time accord-
ing to the same law. As a result, the spatial structure of 
the IF data and their ratio (41) remain unchanged at all 
times.

6. Absorption and stimulated emission 
of an atom without a recoil momentum

Analysis of nonradiative energy transfer has shown that the 
momentum of an atom interacting only with the reactive 
components of the electromagnetic field does not change 
during its absorption or stimulated emission. Here we con-
sider another example of this interaction. Let us assume that 
a transparent medium with a negative dielectric constant ed  
and a magnetic permeability equal to 1 occupies a half-space 
y > 0 and borders a vacuum on the plane y = 0. A plane 
monochromatic wave with frequency w, polarized along the 
z axis, is incident from vacuum to the interface between two 
media along the normal. In a reflecting medium this wave 
forms a refracted wave 
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Ez = Aexp(– hy – iwt),  iH k
h

x = Aexp(– hy – iwt),	 (42)

where A is the complex amplitude, and / .h cde w=
Under the action of the electric field Ez of the refracted 

wave, an atom located in a medium at a point with coordi-
nates x = 0, y = l, z = 0 acquires a dipole moment d, oscillat-
ing at frequency w along the z axis,

dz = aEz = aAexp(– hy – iwt),	 (43)

where a(w) is the complex polarisability of the atom. The field 
of a point dipole (43) is described by formulae (22) – (24), 
where it is necessary to set k = ih. The fields of the refracted 
wave and the induced dipole are reactive and, when taken 
separately, do not transfer either energy or momentum. 
Nevertheless, superposition of these fields gives rise to IFs of 
energy and momentum. The IF of energy to an atom through 
the plane y = y1 is

( 2 ),expd dI S x z A hl2
1int int

w y
2a w= - = - -

3-

3

llyy 	 (44)

if 0 < y1 < l, and equal to zero if y1 > l [8]. In the case of an 
absorbing atom, the energy flux is directed from the interface 
between two media, i.e. from the incident wave, to the atom. 
For an excited atom, the energy flux is directed from the atom 
to the interface between two media and amplifies the reflected 
wave due to the stimulated emission of the atom.

The IF of momentum to the atom through the plane y = 
y1 is nonzero only for py,

d dI x z h A2
1int int

p yy
2

y
s a= - =

3-

3

lyy exp(–2hl),	 (45)

if 0 < y1 < l, and equal to zero if y1 > l [8]. Expression (45) 
describes the time-averaged gradient force acting on the 
induced dipole. This is the force of interaction of the induced 
dipole with the surface polarisation charges of the medium. It 
has nothing to do with either the absorption of the atom or its 
stimulated emission. Thus, absorption and stimulated emis-
sion of an atom occur without changing the momentum of the 
atom. In this case, we can speak of an optical analogue of the 
Mössbauer effect, since the corresponding momenta from the 
incident and reflected waves are received by the medium in 
which the atom is located. The physical nature of this effect is 
associated with the peculiarity of the energy and momentum 
transfer by reactive electromagnetic fields. For reactive fields, 
the time-averaged momentum density is zero and, so they, 
like constant electric fields, can transfer momentum only 
between charges.

7. Interference of fields of thermal radiation 
and zero oscillations

We consider equilibrium radiation in the form of a superposi-
tion of a classical thermal field and a quantum field of zero-
point oscillations, which is described as a chaotic field. Here, 
this model of equilibrium radiation is used to derive the 
Planck formula with the help of interference of thermal radia-
tion fields and zero-point oscillations [12, 13].

Let the mode of equilibrium radiation with frequency 
w and given polarisation be a superposition of statistically 

independent chaotic fields of thermal radiation at tempera-
ture T and zero-point oscillations that do not depend on tem-
perature. The average mode energy is expressed as

T 0e e e= + ,	 (46)

where Te  is the average energy of the thermal field, and 

0e  is the average field energy of zero-point oscillations.
Using the well-known properties of classical thermal radi-

ation and zero-point oscillations, we can prove that the dis-
persion of the mode energy [12, 13] is

( ) 2D T T2
2 2 2

0e e e e e e= - = + .	 (47)

In deriving (47), we took into account that

( )D 2
T T2 e e= ,  ( )D 002 e = .	 (48)

The second term on the right-hand side of equality (47) 
describes the fourth-order interference in the field between 
thermal radiation and zero-point oscillations.

Application of the laws of thermodynamics to equilibrium 
radiation gives a formula for the average energy, expressing 
Wien’s law [14]:

( )fe w bw= ,	 (49)

where f is an unknown function; b = 1/(kBT ); and kB is the 
Boltzmann constant. Fluctuations of the energy of a mode in 
a fixed volume obey the equation

( ) d
d

D2 e b
e

= - . 	 (50)

Applying (48) – (50) separately to the thermal field and the 
zero-point oscillation field, we obtain

k T1
BTe b= = ,  f0e w= (¥).	 (51)

For a superposition of fields, the solution of equation (50) 
using (47) and the condition ( , )T 3e w  = 0 is written in the 
form [12, 13]

2exp 1

2
T

0

0
e

b e

e
=

-
.

_ i 	 (52)

Substituting (52) in (46) and setting ( ) /f 23 '= , we arrive at 
the Planck formula for the average energy of one mode of 
equilibrium radiation

[ / ( )] .exp k T 1 2
1

B'
'

'e w
w w= - + 	 (53)

This wave derivation of the Planck formula is not rigor-
ous, since the existence of zero-point oscillations with cer-
tain statistical properties is postulated. It only demon-
strates that, as in the case of IFs, a superposition of linear 
fields can, due to interference, acquire qualitatively new 
properties that are absent in interfering fields. Comparison 
of formulae (51) and (52) clearly shows this, since the 
superposition of fields changes the statistical properties of 
thermal radiation.
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8. Conclusions

In classical electrodynamics, interference ensures the fulfil-
ment of conservation laws when charges interact with an elec-
tromagnetic field. The IFs of energy, momentum and angular 
momentum, distributed continuously in space serve as an 
effective tool for analysing the formation of an interference 
pattern and the processes of interaction of electric charges 
with an electromagnetic field. They make it possible to reveal 
the multifunctionality of interference and describe qualita-
tively new and non-obvious properties of the superposition of 
both constant and time-variable fields.

The interference fields make it possible to perform a spa-
tial analysis of elementary acts of absorption and emission of 
atoms interacting with electromagnetic waves of any spatial 
structure, including evanescent waves and reactive fields. In 
this case, there is no need to quantise these fields, which is of 
great importance for near-field fields widely used in nano-
optics and plasmonics.

The interference effects considered in the work show that 
interference is a mechanism for the formation of qualitatively 
new properties in a linear system of electromagnetic fields, in 
which an arbitrary combination of these fields is described at 
a higher level, when the superposition principle is not fulfilled 
and the system ceases to be linear. In this case, we can speak 
about a synthesis of elements rather than their addition.
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