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Abstract.  We consider the issues of measuring the deformability of 
red blood cells by the method of laser diffractometry in shear flow 
(ektacytometry). The measurement procedure is optimised taking 
into account the finite resolution of the video recording system of 
the laser ektacytometer. An algorithm is proposed that allows one 
to determine with high accuracy the diffraction pattern parameters 
necessary for measuring the characteristics of the erythrocyte 
deformability distribution.

Keywords: deformability of red blood cells, laser diffractometry, 
data processing algorithms.

1. Introduction

In some diseases, red blood cells with increased rigidity are 
present in human blood. Such cells do not pass well through 
the capillaries and impede the delivery of oxygen to the 
organs and tissues of the body. As an example, we can 
mention sickle cell anaemia [1], falciparum malaria [2], and 
hereditary spherocytosis [3]. Reduced deformability of 
erythrocytes can complicate diabetes mellitus, coronary 
heart disease, cerebrovascular accident and many other 
diseases [4]. In this regard, an important task is to measure 
the deformability of red blood cells [5, 6], as well as to anal-
yse the factors affecting this characteristic of blood cells 
[7 – 9]. Fundamental aspects of red blood cell deformability 
can be studied using techniques that work with individual 
blood cells, such as aspiration of an erythrocyte into a 
micropipette, atomic force microscopy, and laser tweezers 
[10]. Medical applications require techniques to rapidly 
process large cell ensembles. One of them is laser diffrac-
tometry of red blood cells in shear flow (ektacytometry) 
[11 – 13].

The idea behind this method is to measure the deforma-
tion of blood cells in a given shear stress field. A highly 
diluted suspension of red blood cells is poured into a gap 
between the walls of two transparent coaxial cups, one of 
which is stationary and the other can rotate at a given 

angular velocity (a so-called Couette cell). The rotation of 
the movable cup creates shear stresses in the suspension, 
which deform red blood cells, pulling them along the flow. 
The suspension is illuminated with a laser beam and the 
resulting light scattering pattern – a diffraction pattern – is 
observed.

In practice, laser ektacytometry of red blood cells is 
used to diagnose and treat sickle cell anaemia, malaria and 
other diseases caused by impaired deformability of blood 
cells. In this case, the task is to measure not only the aver-
age deformability, but also the characteristics of the red 
blood cell deformability distribution, in particular, to 
determine the fraction of weakly deformable erythrocytes 
in the blood sample under study [14]. To solve this task, 
various methods have been considered [15 – 18]. We have 
proposed algorithms for processing laser ektacytometry 
data, which make it possible to measure the characteristics 
of red blood cell deformability distribution, such as its 
average value, width and distribution asymmetry [19 – 22]. 
One of the algorithms, i.e. the line curvature algorithm, 
involves measuring the curvature of the iso-intensity line of 
the diffraction pattern. In this paper, we discuss the opti-
misation of this procedure taking into account the finite 
resolution of the video recording system of a laser ektacy-
tometer. To solve this problem, we introduce the concept 
of a band point of the iso-intensity line, defining it as one 
of the points on a circle of the line curvature under condi-
tions when the line itself is not precisely determined, but is 
given as a band of finite width.

2. Diffraction pattern characteristics

Following Refs [19 – 22], we simulate red blood cells in the 
shear flow of a laser ektacytometer by elliptical disks with 
semiaxes a and b. Taking into account the nonuniformity of 
the red blood cell ensemble, we consider the parameters a and 
b as random variables and describe them by the formulae a = 
a0(1 + e) and b = b0(1 – e), where a0 and b0 are the average 
sizes of the semiaxes, and e is a random parameter, the aver-
age value of which is assumed to be zero, i.e., G He  = 0. The 
measured parameters have the form

s b
a
0

0= ,  2G Hm e= ,  v 3G He= ,	 (1)

which characterise, respectively, the average deformability of 
red blood cells, the width, and the asymmetry of their deform-
ability distribution.

We represent the light intensity distribution in the diffrac-
tion pattern as [22]
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Here, angle brackets mean averaging over the ensemble of red 
blood cells; Iu  = I/I0  is the normalised intensity; I is the light 
intensity at a given point in the diffraction pattern; I0 is the 
intensity of the central diffraction maximum;

( , )x y z
k a x b y2 2 2 2x x= = + ;	 (3)

x and y are the coordinates of the point of the diffraction 
pattern; k = 2p/l is the wave number; l is the laser wave-
lengt; z is the distance from the measuring volume to the 
observation screen;

( )
( )

G
J2 1

2

x x
x

= < F 	 (4)

is the Airy function; and J1(x) is the first order Bessel func-
tion. Formulae (2) – (4) were obtained in the approxima-
tion of single scattering and anomalous diffraction; they 
describe the light intensity distribution in the far diffrac-
tion zone in the region of small scattering angles and in 
that part of the space that lies outside the forward laser 
beam. A detailed derivation of formulae (2) – (4) is pre-
sented in our papers [23 – 27].

The iso-intensity line of the diffraction pattern is the line 
on the observation screen, on which the scattered light inten-
sity has a constant value:

I =u const.	 (5)

Equations (2) – (5) implicitly define the function y = y(x) 
or x = x( y), which describes the shape of the iso-intensity 
line. This line is symmetrical about the Cartesian coordi-
nate axes.

Let us assume that the iso-intensity line shape can be 
measured using a laser ektacytometer. However, the mea-
surement results will not be very accurate due to the finite 
resolution of the diffraction pattern. In practice, the iso-
intensity line is a set of points in the diffraction pattern, the 
light intensity in which lies in a small interval near a given 

value: ( , )I I x y I I0 0G G D+u u u u . Thus, the iso-intensity is actually 
a band of small but finite width (Fig. 1). The limiting width of 
this band is determined by the resolution of the video record-
ing system of the laser ektacytometer.

The points of intersection of the iso-intensity line with 
the Cartesian coordinate axes are called polar points; there 
are only four such points. However, due to the symmetry of 
the iso-intensity line, it is sufficient to consider two of them, 
i.e. the upper and right polar points. The upper polar point 
has coordinates x = 0 and y = y(x = 0) = yp, and the right 
one, y = 0, x = x(y = 0) = xp.

To measure the characteristics of the red blood cell 
deformability distribution, we propose an algorithm based on 
measuring the curvature of the iso-intensity line at its polar 
points [22]. The input parameters for this algorithm are 
dimensionless quantities determined by the formulae

( ) ( ) , ( ) ( )
d
d

d
d

C x
y
x y C y
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y
x0 0 0 01 2

2

2 2

2

= = = = .

The measurement of C1 and C2 is complicated by the fact 
that in practice the iso-intensity line is a band of finite width. 
This circumstance reduces the accuracy with which the 
parameters of the iso-intensity line curvature, as well the 
desired characteristics of the red blood cell deformability, can 
be determined.

3. Band point algorithm

In [28], we proposed a method for measuring the iso-inten-
sity line curvature based on the concept of a band point. 
One of the points of the circle of curvature of the curve 
under the conditions when this curve is specified in the 
form of a band of finite width is what we call a band point. 
Let us consider the band point algorithm using the exam-
ple of the upper polar point of the iso-intensity line. The 
iso-intensity line curvature parameter at its upper polar 
point is defined as

C x
y

y
y

2 12
2

2p

p
= - .	 (6)

Here x2 and y2 = y(x2) are the coordinates of the band point, 
and

x x y
y

22 p
p

4
D

= ,	 (7)

Dy
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Figure 1.  (a) Diffraction pattern, (b) iso-intensity line and (c) fine structure of this line near its upper polar point; ∆y is the vertical size of one pixel 
of the diffraction pattern.
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where ∆y is the iso-intensity line width. The error in measur-
ing the parameter C2 according to formula (6) does not 
exceed

C y
y

2
p

d
D

= .	 (8)

It is seen that this error increases with increasing line width 
∆y. Its minimum possible width ∆ymin is determined by the 
resolution of the video recording system of the laser ekta-
cytometer, i.e. ∆ymin = yp/Ny, where Ny is the number of 
pixels in the diffraction pattern in the area from the pattern 
centre to the upper polar point of the iso-intensity line. The 
minimum error in measuring the iso-intensity line curva-
ture is dC2 = 1/ Ny . For example, if Ny = 104, then dC2 = 
1 %. The polar and band points of the iso-intensity line are 
shown in Fig. 2.

The estimates given in [28] should be regarded as approx-
imate, because they are obtained on the basis of an approxi-
mate formula for the iso-intensity line curvature. More 
accurate data can be obtained based on numerical calcula-
tions. The purpose of this work is to verify and refine the 
band point algorithm proposed in [28]. In particular, for-
mula (7) for the coordinate of the band point needs to be 
refined.

Following [22], we introduce the parameter c0 = a b0 0  
and the normalised coordinates

,U s z
k c x V

s z
k c y1

0 0= = .	 (9)

Here the parameter s is determined by formula (1). In these 
coordinates, taking into account (3), x takes the form:

( ) ( )U V1 12 2 2 2x e e= + + - .	 (10)

Formulae (2), (5), and (10) implicitly define the function 
V = V(U ) or U = U(V ), which describes the form of the iso-
intensity line. The iso-intensity line curvature parameter 
near its upper polar point is written in the form

( ) ( )C s V V0 02 = m .

Using the band point algorithm, this parameter can be 
calculated by the formula

C sU
V

V
V
2 12

2

2p

p
= - .	 (11)

To perform numerical calculations, it is necessary to select 
a specific model of an ensemble of red blood cells in the shear 
flow of a laser ektacytometer. One of the simplest models is a 
bimodal ensemble, which contains only two types of cells 
(rigid and soft erythrocytes). Let the cells of the first type be 
characterised by the aspect ratio s1 = a1/b1, and the second 
type, by the aspect ratio s2 = a2/b2. The fraction of cells of the 
first type in the ensemble will be denoted as p. Without loss of 
generality, we will assume that s1 < s2. In this model, the 
erythrocyte shape parameters e1 and e2, according to [19], 
take the form

, .s s
s s

s s
s s

1
1

2
1 2

2e e= +
-

= +
-

	 (12)

Here

, ( )s M M s s M s s p 2
12

1 2 1 2= + + = - -a k.	 (13)

The light intensity distribution in the diffraction pattern is 
described by the expression
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where

( ) ( )U V1 11 1
2 2

1
2 2x e e= + + - ,

( ) ( )U V1 1 22 2
2 2 2 2x e e= + + - .	

(15)

When condition (5) is satisfied, we find the iso-intensity line 
using formulae (14) and (15).

The coordinate of the upper polar point of this line, Vp = 
V(U = 0), is determined by the equation

(1 ) [(1 ) ] (1 )(1 ) [(1 ) ]I p G V p G Vp p1
2 2

1 2
2 2

2e e e e= - - + - - -u

	 [ (1 ) (1 )(1 ) ]p p 1
1
2 2

2
2 2e e# - + - - - ,	 (16)

and the coordinate of the right polar point, Up = U(V = 0), is 
determined by the equation

(1 ) [(1 ) ] (1 )(1 ) [(1 ) ]I p G U p G Up p1
2 2

1 2
2 2

2e e e e= - + + - - +u

	 [ (1 ) (1 )(1 ) ]p p 1
1
2 2

2
2 2e e# - + - - - .	 (17)

The equation for the coordinate of the upper band point

V2 = V(U2)	 (18)

yp

y2

y1

x1x2

xp

x

y

Figure 2.  Polar and band points on the iso-intensity line.
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has the form

(1 ) (1 )(1 )
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where
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2
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2
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( ) ( )U V1 12 2
2
2
2

2
2
2
2x e e= + + - .	

(20)

The transcendental equation (19) for the coordinate of the 
band point V2 can be solved numerically with any accuracy by 
choosing a sufficiently small step ∆V2 of changing the coordi-
nate V2. Let us restrict ∆V2 by the condition

V N
V

2
p

y
D = .	 (21)

In doing so, we admit inaccuracy in determining the coordi-
nates of the band point in order to take into account the 
finite width of the iso-intensity line. The number Ny in (21) 
characterises the resolution of the diffraction pattern and is 
a calculation parameter. Another parameter of the calcula-
tion is the coordinate of the band point, U2, in formulae (11) 
and (20).

We compare the result of calculating C2 with the exact 
value of this parameter, which we find by the formulae 
[22]
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l l

l l
,	 (22)

g1V = (1 – e1)(1 + e1)4p,

g2V = (1 – e2)(1 + e2)4(1 – p),

h1V = (1 – e1)3(1 + e1)2p,

h2V = (1 – e2)3(1 + e2)2(1 – p).	

(23)

The function ( )G xl  is defined as

( ) [ ( ) ( )] ( )d
dG G J J J8 23 0 1 1x x x

x x x x= = -l .	 (24)

The error in measuring the iso-intensity line curvature using 
the band point algorithm is found by the formula

100 %C C
C C

ex

ex
2

2

2 2d =
-

.	 (25)

4. Verification of the algorithm 
in a numerical experiment

The procedure for verifying the band point algorithm is as 
follows. By setting the erythrocyte ensemble parameters s1, s2, 
and p, we find the ensemble characteristics s, e1, and e2 by 
formulae (12) and (13). Then, using formulae (14) and (15), 
we find the distribution of light intensity in the diffraction 

pattern arising from the scattering of a laser beam by an 
ensemble of red blood cells. When condition (5) is met, these 
formulae describe the iso-intensity line, which is characterised 
by the normalised light intensity Iu . By solving numerically 
equations (16) and (17), we determine the coordinates of the 
polar points of this line, Vp and Up. Then we find the exact 
value of the iso-intensity line curvature parameter at its upper 
polar point, C2ex, using formulae (22) – (24).

Thus, the exact value of the parameter of the iso-intensity 
line curvature, C2ex, has been determined. Now we find the 
value of the parameter C2 using the band point algorithm, 
taking into account the finite width of the iso-intensity line. 
The width of the line, ∆V2, near its upper polar point is deter-
mined by formula (21). We select the coordinate of the upper 
band point, U2, and find the second coordinate of this point, 
V2, numerically with formulae (19) and (20); in this case, we 
change the value of V2 with a step equal to ∆V2. In this case, 
the coordinate V2 is determined not exactly, but with an error 
equal to the iso-intensity line width. We substitute the 
obtained coordinate values into formula (11) and find the 
value of the parameter of the iso-intensity line curvature, C2, 
under the conditions when this line is given in the form of a 
band of finite width. The parameters of this calculation are 
the quantity Ny in formula (21), which characterises the reso-
lution of the diffraction pattern, as well as the normalised 
coordinate of the upper band point, U2/Up = x2/xp. After 
that, we estimate the error of the band point algorithm using 
formula (25).

The calculation results are presented in Fig. 3, which 
demonstrates the measurement error of the curvature 
parameter of the iso-intensity line as a function of its width 
and the choice of the band point coordinate. The abscissa 
shows the ratio of the band point coordinate x2 to the coor-
dinate xp of the iso-intensity line polar point, and the ordi-
nate shows the error in measuring the line curvature param-
eter at the upper polar point dC2, obtained using the band 
point algorithm under conditions when the iso-intensity line 
is a band of finite width. The width of this band is deter-
mined by formula (21). The straight horizontal line indicates 
an error level of 1 %. The found dependence can be com-
pared with the approximate dependence given in [28] and 
expressed by formula

2C N x
x

x
x

2
1 1 2

2
2

2
2
2

p

py
d = +d dn n> H

(shown in the figure by a dashed line). The data presented in 
Fig. 3 refer to the upper band point of the iso-intensity. 
Similar results were obtained for the right band point.

The calculation results are presented in more detail in 
Table 1; use is made of the following notations: s1 is the aspect 
ratio for the first component of the erythrocyte ensemble, s2 is 
the aspect ratio for the second component of the erythrocyte 
ensemble, p is the fraction of particles of the first type in the 
ensemble, Nx is the resolution of the video recording system 
of the laser ektacytometer along the horizontal axis, y1 is the 
vertical coordinate of the right band point of the iso-intensity 
line, x2 is the horizontal coordinate of the upper band point, 
xp is the coordinate of the right polar point of the iso-intensity 
line, yp is the coordinate of the upper polar point (these points 
are shown in Fig. 2), dC1 is the measurement error of the 
parameter of the iso-intensity line curvature at the right polar 
point, and dC2 is measurement error of the parameter of the 
iso-intensity line curvature at the upper polar point. In all 
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cases, we assumed the same resolution of the video recording 
system along the horizontal and vertical axes, i.e. Nx = Ny; 
the level of light intensity at the iso-intensity line is Iu  = 0.05.

5. Discussion and results

Numerical experiments carried out on the model of a bimodal 
ensemble of red blood cells show that, under typical experi-
mental conditions, the band point algorithm makes is possi-
ble to measure the parameters of the iso-intensity line curva-
ture with an error not exceeding 1 % (see Fig. 3 and Table 1). 
In this case, as a rule, it is sufficient to have the resolution of 
the laser ektacytometer, characterised by the numbers Nx = 
Ny = 2000. Only in some cases, to achieve such an accuracy of 
measurements, a resolution at a level of Nx = Ny = 5000 is 
required. Thus, provided the diffraction pattern is of good 
quality, the band point algorithm provides an accuracy suffi-
cient for practical applications.

Analysis of the data obtained allows us to conclude that 
the optimal values of the coordinates of the band points are 
determined by the formulae

,y y x
x x y y

y
1 2p

p
p

p
4 4D D

= = .

Here xp and yp are the coordinates of the polar points, and 
∆x and ∆y are the widths of the iso-intensity line near the 
polar points. The minimum values of ∆x and ∆y are deter-
mined as

, ,x N
x

y N
yp p

x y
D D= =

where Nx and Ny are the number of pixels in the diffraction 
pattern along the horizontal and vertical axes, respectively. In 
this case,

, .y
N

y
x

N

x
1 2

p p

x y
4 4

= = 	 (26)

For example, if Nx = Ny = 2000, then y1 = 0.15yp and x2 = 
0.15xp.

6. Conclusions

The problem of measuring the curvature of iso-intensity lines 
of diffraction patterns in laser ektacytometry of red blood 
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Figure 3.  Error in measuring the curvature of the iso-intensity line as a 
function of the coordinate of the band point. Calculation parameters 
are as follows: (a) s1 = 1, s2 = 2, p = 0.5, Iu  = 0.05, Nx = 104; (b) s1 = 
1, s2 = 2, p = 0.5, Iu  = 0.05, Nx = 5000; (c) s1 = 1, s2 = 2, p = 0.5, Iu  = 
0.05, Nx = 2000; (d) s1 = 1, s2 = 2, p = 0.5, Iu  = 0.05, Nx = 1000; and 
(e) s1 = 1, s2 = 2, p = 0.5, Iu  = 0.05, Nx =500.

Table  1.  Numerical results.
Calculation parameter Coordinates of band points

s1 s2 p Nx

y1/yp x2/xp

(dC1 < 1 %) (dC2 < 1 %)

1.0 2.0 0.5 104 0.02 – 0.33 0.02 – 0.33

1.0 2.0 0.5 5000 0.06 – 0.33 0.06 – 0.33

1.0 2.0 0.5 2000 0.07 – 0.33 0.07 – 0.33

1.0 2.0 0.5 1000 0.13 – 0.33 0.13 – 0.33

1.0 2.2 0.5 2000 0.08 – 0.34 0.08 – 0.34

1.0 2.5 0.5 2000 0.09 – 0.17 0.09 – 0.17

1.5 3.0 0.5 2000 0.07 – 0.33 0.07 – 0.33

1.0 2.0 0.4 2000 0.09 – 0.18 0.09 – 0.61

1.0 2.0 0.3 5000 0.07 – 0.15 0.07 – 0.31

1.0 2.0 0.2 5000 0.07 – 0.15 0.06 – 0.29

1.0 2.0 0.1 5000 0.07 – 0.27 0.07 – 0.27

1.0 2.0 0.05 5000 0.07 – 0.56 0.07 – 0.26

1.0 2.0 0 5000 0.06 – 0.27 0.06 – 0.26
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cells is considered. These parameters are the input data for the 
algorithm [22], which makes it possible to measure the char-
acteristics of erythrocyte deformability based on laser ektacy-
tometry data. The finite resolution of the diffraction pattern 
leads to the fact that, in practice, the iso-intensity line is a 
band of finite width. To measure the curvature of such a line, 
we have proposed an algorithm based on the concept of a 
band point. We call a band point one of the points of the cir-
cle of curvature of a line under conditions when this line itself 
is not precisely defined, but is specified as a band of finite 
width. Our proposed algorithm for measuring the iso-inten-
sity line curvature of the diffraction pattern is expressed by 
the formulae

,C y
x

x
x

C x
y

y
y

2 1 2 1
p

p

p

p
1

1

1
2

2

2= - = - ,

where C1 and C2 are the parameters of the curvature of the 
line at its polar points; xp and yp are coordinates of polar 
points; x1, y1 and x2, y2 are the coordinates of the band 
points of the iso-intensity line (see Fig. 2). Approximate 
analytical expressions for the coordinates of band points 
were obtained in our work [28]. In this work, based on the 
data of a numerical experiment, the estimates are refined 
and it is concluded that the optimal choice of the coordi-
nates of the band points is determined by formulae (26), 
where the numbers Nx and Ny characterise the resolution of 
the video recording system of a laser ektacytometer along 
two coordinate axes.

Note that the measurement of the curvature of the iso-
intensity line using the band point algorithm requires a mini-
mum amount of information: the coordinates of four polar 
points and eight band points of the iso-intensity line. This 
simplifies the procedure for measuring the characteristics of 
erythrocyte deformability based on laser ektacytometry, pro-
posed in [22].
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