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Abstract.  An analytical model has been developed for the genera-
tion of a superstrong quasi-stationary magnetic field (up to several 
GG) in the focal waist of an ultra-intense short circularly polarised 
laser pulse interacting with a gas-cluster target. The rotation of 
relativistic electrons around the ionised core of the cluster has been 
shown to produce a magnetic moment and a quasi-stationary mag-
netic field. With a large number of nanoclusters, the magnetic field 
occupies the entire focal volume with a characteristic spatial scale 
of tens of micrometers and exists during the cluster expansion time 
(i.e., several picoseconds).

Keywords: superstrong quasi-stationary magnetic field, nanoclus-
ters, superintense laser interaction.

1. Introduction

Studies of the influence of superstrong magnetic fields on 
the properties of objects are relevant in various fields of 
physics and astrophysics. The experimental generation of 
such fields is possible at high current densities, achieved, for 
example, using Z-pinches [1]. Recently, the pinch effect in 
laser targets made of thin wires has been investigated and a 
magnetic field amplitude of the order of 1 GG has been 
achieved on a scale of a few micrometers [2, 3]. Other meth-
ods of generating magnetic fields of the same or higher 
intensity are also of considerable interest. It is known that 
the absorption of a relativistic-intensity laser pulse by tar-
gets of various structures is accompanied by the generation 
of a current of hot electrons and a countercurrent of colder 
electrons generating quasi-stationary magnetic fields of 
large amplitude [4 – 7]. In the case of solid targets, the mag-
netic field is localised near the target surface [8] and its 
strength is tenths of the laser field strength, while the life-
time is much longer than the laser pulse duration. In targets 
transparent to laser radiation, a circularly polarised laser 
pulse due to the inverse Faraday effect [9, 10] generates lon-
gitudinal (along the laser beam axis) magnetic fields, the 
lines of force of which correspond to the magnetic dipole 

occupying the focal volume. A special laser pulse with a 
screw-shaped spatial intensity distribution was proposed to 
obtain a longitudinal magnetic field with an amplitude above 
1 GG [11]. In addition to the inverse Faraday effect, a quasi-
stationary magnetic field is generated in a gas laser target 
behind the leading edge of a short laser pulse due to the 
anisotropy of the electron pressure during tunnelling ionisa-
tion of atoms [12]. However, these methods can produce a 
short-lived (on the order of the laser pulse duration) magnetic 
field in a rarefied plasma. When use is made of long (several 
picosecond) laser pulses of relativistic intensity and spiral 
metal targets, it is possible to generate a quasi-stationary field 
with an amplitude of ~10 MG on the spiral axis [13]. The 
question arises whether it is possible, under laboratory condi-
tions, to further increase the amplitude of the magnetic field, 
its lifetime, and the volume of space occupied by the field.

In this work, we have developed a theory of generation of 
superstrong magnetic fields and giant magnetic moments, 
based on electron inertia in cluster-gas targets [14, 15] irradi-
ated by a circularly polarised ultrashort laser pulse of relativ-
istic intensity. In contrast to a homogeneous low-density 
plasma, our method makes it possible to generate many dense 
plasmas (magnetic dipoles) equal to the number of clusters in 
the focal volume. For an optimal cluster size, a large number 
of clusters in the focal region produce a quasi-uniform mag-
netic field throughout the focal volume. Thus, a medium is 
formed from parallel oriented magnetic dipoles, in which the 
magnetic field occupies the entire volume between the clusters 
and leads to their magnetic interaction. In this case, the field 
lines of force can close through the external space (when the 
entire focal region is equivalent to one giant dipole). A unique 
feature of an individual element of such a structure (a mag-
netic dipole on a scale of hundreds of nanometres) is a toroi-
dal long-lived relativistic electric current that generated a 
dipole, which is one of the areas of research in modern elec-
trodynamics [16].

We simulated the interaction of a single cluster with a 
circularly polarised laser pulse using numerical methods 
in [17]. In a subsequent work [18], we analytically esti-
mated the values of the magnetic moments of the clusters 
and the structure of the magnetic field of the cluster tar-
get, as well as proved the possibility of collective mag-
netic interaction of nanoclusters. This paper is devoted to 
the further development of the theory of magnetic field 
generation in a cluster target: the dependence of the mag-
netic field on the cluster radius and the duration of the 
laser pulse is taken into account, and the temporal dynam-
ics of the appearance of a magnetic field during a laser 
pulse and its relaxation are investigated. The correctness 
of the presented theory is proved by comparison with 
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numerical calculations [17]. Note that for the generation 
of magnetic dipoles, a laser pulse energy of the order of 
several or tens of millijoules is sufficient; therefore, a 
‘quasi-stationary’ magnetisation of the focal volume of a 
cluster target is possible by repeating laser pulses with a 
frequency of up to several kHz. The thus generated mag-
netoactive cluster laser plasma with a superstrong regular 
magnetic field and magnetic dipoles can be used as an 
example of the experimental implementation of magneto-
plasma structures of pulsars in astrophysics.

2. Dynamics of cluster electrons and transfer 
of the angular momentum from the laser field 
to cluster electrons

We assume that as a result of interaction with a circularly 
polarised electromagnetic (EM) wave, the cluster is par-
tially ionised (with a charge Q) and electrons in the form of 
a spherical layer (with a total charge –Q = eNe, where e is 
the electron charge and Ne is the number of electrons in a 
layer), surrounding the ionised core of a cluster of radius 
R, rotate under the action of a circularly polarised laser 
pulse and the cluster’s internal electric and magnetic fields 
(see Fig. 1). In the electron shell of the cluster there is a 
radius p, where the electron density is equal to the critical 
density [ne(p) = ncr]; this radius is called the characteristic 
electron radius of the cluster. Then the thickness of the 
spherical layer of moving electrons, nontransparent for 
laser radiation, will be p – R. The thickness of the skin 
layer  ls  in the ionised core of the cluster will be assumed to 
be small in comparison with R.

Let us consider the dynamics of an electron in a quasi-
stationary electric and magnetic field of a cluster and in the 
field of a circularly polarised wave E(x, t) = ELcos(kx – wt)ey + 
ELsin(kx – wt)ez. The vector potential of such a wave has the 
form

A(x, t) = k
E0 [sin(kx – wt)ey – cos(kx – wt)ez].	 (1)

The Lagrange function of a shell electron in the EM fields 
of a cluster and a laser pulse in a cylindrical coordinate system 

with the x axis along the axis of a circularly polarised laser 
beam is written as
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corresponds to the electric field of the ionic core and the 
electron shell and vanishes (screening) at r2 + x2 = p2. The 
angular component of the vector potential of a quasi-sta-
tionary magnetic field for a uniform spherical layer rotat-
ing with an angular velocity ao  is determined by the 
expression
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Note that in formula (2) only the terms including the laser 
field depend on the angle of rotation a; therefore, the torque 
of forces ¶ ¶( / )L a  is produced by the laser field rather than by 
quasi-stationary fields. The equation of motion of an electron 
along the angle a (the equation for the angular momentum of 
an electron) takes the form
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The second term under the sign of the derivative on the left-
hand side of (4) represents the contribution to the total 
angular momentum of the system of a quasi-stationary mag-
netic field. Note that the ratio (|e|Q/p)/(2gmc2) of the two 
terms under the sign of the derivative on the left-hand side 
coincides (up to a factor of the order of unity) with the ratio 
of the characteristic potential energy of interaction of an 
electron |e|Q/p to its kinetic energy 2gmec2. The condition 
for the boundedness of the orbit of the relativistic electron in 
the Coulomb field of the cluster after the end of the laser 
pulse is the fulfilment of the inequality m ec2g – |e|Q/p < 
mec2, i.e., for g > 1, the ratio (|e|Q/p)/(2gmc2) ~ 1/2, and 
the contributions of the electron and the quasi-stationary 
field to the total angular momentum in (4) are approxi-
mately the same.

Radial equation of motion of an electron
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Figure 1.  Scheme of interaction of a circularly polarised laser wave with 
a nanocluster.
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[ ( ) ( )]coseE c
x kx t t t1L w a+ - - -
oa k 	 (5)

shows that the radial motion occurs under the action of the 
centrifugal force mr 2g ao , the force of the Coulomb interaction 
with the ionic core, reduced by the value of the Lorentz force 
of the quasi-stationary magnetic field [these two forces cor-
respond to the second term on the right-hand side of Eqn 
(5)], and the force from the side of the laser field [last term in 
(5)]. If (5) is averaged in time over several laser field periods 
[which corresponds to the search for a solution in the form  
( ) ( ),r t r r tG H d= + ( ) ( ), ( ) ( )t t x t x x tG H G Hd da a a= + = +o o ) ] , 
then the average values of the total derivative on the left-hand 
side and the laser field force vanish, and the time-averaged 
radial motion corresponds to the compensation of the cen-
trifugal and Coulomb forces acting on the electron:
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Since the electron rotation is caused by the action of a circu-
larly polarised wave, we have G Hao  » – w [the direction of 
rotation of the wave electric field vector E = E0cos(kx – wt)ey + 
E0sin(kx – wt)ez corresponds to rotation from the z axis to the 
y axis, which is opposite to the direction of increasing the 
angle a, with the angle being measured from y to z]. The 
quantity rG H , up to a numerical factor of the order of unity, 
coincides with the previously introduced electron radius of 
the cluster: rG H» p.

The equation of motion of an electron in the longitudinal 
(х) direction, like equations (4) and (5), follows from the 
Lagrange function (2):
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By performing the averaging procedure [x(t) = xG H+ dx(t)], 
we obtain an equation for xG H , corresponding to the equality 
of the force of the ponderomotive pressure of the laser wave 
and the force of the quasi-stationary field, the forces acting on 
the electron in the longitudinal direction:
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In the weak-field approximation [|e|EL/(mewc) << 1], we 
have xG H  » 0, which is equivalent to the minimum of the 
electrostatic potential energy at the centre of the ionic core. 
Note that equation (8) corresponds to the condition of mini-
mum effective longitudinal potential energy of an electron, 
Ueff(x) = – epkAa(p, x) + ej(p, x) + eEL pcos(kx) » epk2Q/5 + 
eEL p – ek2x2Q(0.3 + k –2p–2 + EL p2/2Q)/p, which coincides 
with the energy of a harmonic oscillator (e < 0), that is, the 
oscillating addition dx(t) satisfies the equation of oscillations 
of a relativistic harmonic oscillator:
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Thus, the motion of a cluster electron is the rotation of an 
electron in the transverse plane yz and a simultaneous vibra-
tion along the x axis relative to the value xG H  with a fre-
quency
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This character of motion is close to the results of numerical 
simulation given in [17].

Equation (4), when performing the averaging procedure, 
turns into identity, since the mean value of the derivative on 
the left is equal to zero and the mean value of the periodic 
function on the right is also equal to zero. After the end of the 
laser pulse (EL = 0), Eqn (4) expresses the law of conservation 
of the angular momentum of the electron: mr2g ao  » gmp2w = 
const(t). To estimate the value of gmp2w, we use the laws of 
conservation of energy and angular momentum. Let us find 
the laser pulse energy absorbed by the cluster electrons:
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The last term on the right-hand side of (10) describes the con-
tribution of the energy of the electrostatic field of the cluster 
to the absorbed energy. Note that the potential j depends on 
the total cluster charge Q, which is also determined by the 
value of absE . Thus, expression (10) is an implicit equation 
with respect to absE  or with respect to the cluster’s absorption 
coefficient h, since absE  is expressed in terms of the absorption 
coefficient and laser intensity I: absE  = hIpp2tL. (The absorp-
tion coefficient of a spherical cluster is discussed in more 
detail in the Appendix and papers [19, 20].)

Note that the radius p of the critical electron density dif-
fers from the initial cluster radius R by several times. Indeed, 
let all electrons of the cluster be ‘heated’ by a laser pulse 
(which is an upper estimate, since the skin layer thickness ls is 
less than R). Then, at an initial electron density of a cluster of 
~100 ncr, the value of p is estimated as p ~ R 1003  » 4.6 R. 
The absorbed laser energy in the case of circular polarisation 
of a laser pulse is related to the absorbed angular momentum 
by the expression Jabs = absE /w. Thus, one can find the total 
mechanical moment Jabs = hIpp2tL/w absorbed by the cluster 
and the characteristic moment of an individual electron M = 
gmep2w = Jabs/Ne = hIpp2tL/(New). The latter relation makes 
it possible to estimate the number of electrons in the cluster 
shell Ne » hIptL/(gmew2), the total charge of the cluster Q = 
|e|Ne, and the characteristic density of electrons ne = 3Ne/
[4p(p3 – R3)], i.e., the parameters used in the Lagrange func-
tion (2).
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The total magnetic moment of the cluster is estimated 
through its total mechanical moment Negmep2w and the gyro-
magnetic ratio of a relativistic electron |e|/(2gmec), where g = 
gL = a1 2+  is the characteristic Lorentz factor of a hot elec-
tron in a laser target, and a is defined as a = |e|EL/(mewc) = 

/I W2
0l , W0 = 1.37 ́  1018 mm2 cm–2. As a result, the total 

magnetic moment of the cluster is

m » m
e

E p8
2

e L
L L
2

wg h t .	 (11)

Outside the cluster, the spatial configuration of the magnetic 
field corresponds to the magnetic dipole field H(r) = – mex/r3 + 
3mxr/r5; inside the cluster, the magnetic field is uniform. The 
maximum value of the magnetic field Hmax at the end of the laser 
pulse is estimated as the field on the x axis of the dipole (in this 
case, the field is the same at the centre and at the poles):

( ) ( ) ,H p
p m p

e E
e H e

2
4max L

e L

L L
x x 3

2

t
m

wg
h t

= = =

( )
E

H
m p
e E

a
a

p
c

4 1 4
max

L

L

e L

L L L

2

t
wg

h t
h

t
= =

+
.	

(12)

Comparison of the estimate of Hmax(tL) by formula (12) 
with the result of numerical simulation [17] is shown in 
Fig.  2. Note that according to (12), Hmax(tL) ~ tL. This 
means that the maximum magnetic field increases linearly 
with time during the laser pulse: Hmax(t) = Hmax(tL)t/tL, 
and t £ tL. Based on (12), one can also predict a stronger 
field for a cluster with a smaller radius: Hmax(tL) ~ p–1 ~ 
R–1 (in the absence of a Coulomb explosion of the cluster), 
which agrees with the results of calculations in [17]. Since 
the magnetic field of the dipole decreases in space as r –3, 
the average magnetic field in the focal volume with the 
cluster density ncl after the end of the laser pulse can be 
estimated by the formula

HG H» ( ) ( ) , 1.H
n
p

H n p n p/max maxL
cl

L cl cl1 3

3
3 3 1t t=-d n 	 (13)

The field with the amplitude Hmax(tL) exists during the 
cluster lifetime tcl; therefore, estimates using (11) and (12) are 
valid for short laser pulses: tL < tcl (the cluster lifetime tcl is 
estimated below). Note that formulae (11) and (12) for the 
average values of the magnetic moment and the field are lim-
ited by the laser field amplitude: a £ atr, atr = 2Ze2niRl/
(3mec2)  (ni is the initial density of cluster ions), corresponding 
to the absence of a Coulomb explosion of the cluster (detach-
ment of all electrons by the laser field). In Fig. 2, the laser 
intensity corresponding to atr is shown with a vertical dashed 
line. For a very short pulse (3 fs), the magnetic field does not 
disappear at a ® atr, which is due to the incompleteness of 
transient processes (electron acceleration) at such a short 
pulse duration. For a longer pulse (10 fs), the magnetic field 
disappears at a ® atr. Note that in the estimates of the mag-
netic field in our published work [18], we assumed that the 
laser pulse is sufficiently short (ctL/4p ~ 1) and there is no 
dependence of the magnetic field strength on the pulse dura-
tion and cluster radius.

3. Dynamics of the magnetic field 
of the cluster during the laser pulse action

In addition to estimating the characteristic value of the elec-
tron angular momentum M(tL) after the end of the laser 
pulse, Eqns (4) and (9) make it possible to assess the depen-
dence of the electron angular momentum M(t) = g(t)mer2ao (t) 
on time: M(t) » M(tL)t/tL + dM(t), where the oscillating 
addition associated with the action of an alternating laser 
field is determined, taking into account (4), by the equation

( )
[1 ( ) / ] ( ( ))sind

d
t
M t

eE p x t c k x tL

d
d d= - o

~ eELpkdx(t).	 (14)

The amplitude of longitudinal oscillations, dx(t), in formula 
(14) is determined by equation (9).

It can be seen from (14) that during the laser pulse, there 
occur oscillations of the mechanical moment of the electron, 
dM(t) » dx(t)|e|ELpk/wl, relative to the characteristic 
(average over the laser pulse period) value of the moment 
M(tL)t/tL with frequency

pm
e Qk

kp Q
E p

10
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2l
e L

L
2 2
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of longitudinal oscillations of an electron in the cluster shell.
As shown above, when an electron moves in the Coulomb 

field of a cluster, the potential energy is |e|Q/p  » gmec2. 
Accordingly, the frequency wl differs from the laser frequency 
w by a factor of the order of unity. The maximum magnetic 
field of the cluster [similar to the mechanical moment of the 
cluster NeM(t)] during the laser pulse action has an average 
(over the laser period) component Hmax(t) = Hmax(tL)t/tL,t £ 
tL linearly increasing in time and a variable component 
dHmax(t) = 2|e|Ne´ dM(t)/(gLmecp3) oscillating with a fre-
quency close to the laser frequency. Such a time dependence 
of the x-component of the magnetic field (linearly increasing 
average value and oscillations against its background) during 
the laser pulse is confirmed by numerical simulation [17]. 
Figure 3 shows a comparison of the average, linearly increas-
ing in time, component
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Figure 2.  Maximum magnetic field of a Xe+20 cluster (initial radius, 
R = 50; electron density, 182 ncr) irradiated by a laser pulse with a dura-
tion of [(2), PIC calculation] 10 and [(4), PIC calculation] 3 fs; curves (1) 
and (3) are plotted according to formula (12) with h = 0.15 and p = 4R. 
The vertical dashed line shows the laser intensity corresponding to the 
Coulomb explosion of the cluster (removal of all electrons).
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Hmax(t) = Hmax(tL)t/tL = m p
e E t
4 e L

L
2

wg
h

with the results of numerical calculations [17] in a time inter-
val [0, tL] for tL = 6  fs. It can be seen that the time-linear 
increase in the maximum magnetic field value during the 
laser pulse action corresponds to the results of numerical 
simulation.

4. Assessment of the nanocluster lifetime 
and dynamics of the magnetic field 
after the end of the laser pulse

Dissipative forces act on moving electrons in the cluster 
shell, and its ionic core scatters in space. Due to the removal 
of some of the electrons, the ion core acquires a charge and 
is subjected to the action of Coulomb forces. The outer 
electron shell also attracts ions, causing the cluster to fly 
apart. As a result, there are three forces in the hydrody-
namic equation for the ion velocity vi(r, t), which cause 
expansion:
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where Z and mi are the charge and mass of the ion. As fol-
lows from (15), under the action of the thermal pressure of 
the electrons, the expansion occurs with a characteristic 
velocity vi ~ vs ~ c ( ) /Zm m1e L ig - . The characteristic expan-
sion velocity under the action of the internal Coulomb forces 
of the ionic nucleus is vi ~ vQ ~  /e Q Rmi . The magnetic 
component of pressure in (15) can be neglected, since the 
energy density of thermal electrons exceeds the energy den-
sity of the magnetic field. The expansion of the cluster core 

was not taken into account in equations (4) – (9) of the 
electron motion of the cluster shell. Estimates of the value 
inverse to the frequency of Coulomb collisions of hot elec-
trons (lifetime) show that it is significantly greater than R/
vs and R/vQ, i.e. the times of cluster expansion under the 
action of forces in (15). The radiation losses of rotating 
electrons are also small. Cyclotron radiation power emit-
ted by electrons is
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The ratio of the emitted power to the laser power absorbed by 
the cluster (electron energy) has the form
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Since r02/p2 ~ 10–16, the inequality is fulfilled for any reason-
able parameters of the laser pulse and the cluster size. Thus, 
the main channel of dissipation (cooling of electrons) is the 
expansion of the ionic core of the cluster and an increase in 
its radius (slow in comparison with the ‘period’ of electron 
rotation).

At a laser intensity far from the threshold value of the 
Coulomb explosion (a << atr), due to the azimuthal symmetry 
of the quasi-stationary fields of the cluster after the end of the 
laser pulse, the angular momentum of the electron is con-
served and is an adiabatic invariant

¶
¶ dI L

2
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p a a=a

0

2r

oy » M(tL) = const(t),

which is not affected by a slow change in the cluster parame-
ters. In this case, the orbital magnetic moment of the electron 
m depends on time, since the electron energy decreases during 
the expansion of the cluster: m(t) = |e|M(tL)/(2g(t)mec). The 
magnetic field of an electron ball (cluster shell) rotating and 
expanding in space is determined by the magnetisation vector 
(magnetic moment per unit volume) depending on the elec-
tron density, which also decreases during expansion. As a 
result, we have the following dependence of the maximum 
magnetic field (field on the x axis of the cluster) on time after 
the end of the laser pulse:

Hmax(t) » Hmax(tL) ( ) ( )
( )

,n t
n t

t
e L

e L
L2t g

g
t ,

where ne(tL) = ne and gL are defined above. Let the radius of 
the ionic core of the cluster increase as R(t). Then ne(t) ~ 
R–3(t), g(t) = 1 + (gL – 1)[R(0)/R(t)]2. For the time dependence 
of the x-component of the magnetic field averaged over the 
laser period during and after the end of the laser pulse, the 
following formula is valid:
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Figure 3.  Time dependence of the magnetic field maximum in space, 
irradiated by a circularly polarsed laser pulse with an intensity of 
1020 W cm–2 (а = 5.2) and a duration of 6 fs for a Xe+20 cluster with an 
initial radius of 50 nm and a density ne = 182ncr [points are the results of 
numerical simulation [17], and the solid line is the calculation by for-
mula (16)].
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where q(t) is the Heaviside step function. Recall that during 
the laser pulse action, there is also an oscillating part of the 
x-component of the field, dHmax(t).

In the case of strongly relativistic electrons, H(t) ~ R–1(t); 
for nonrelativistic electrons, H(t) ~ R–3(t). The time depen-
dence of the cluster radius R(t) is determined by the expan-
sion regime (Coulomb or thermal) of the cluster:
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Field (16) increases linearly during the laser pulse, remains 
approximately constant during the cluster lifetime tcl » p/vs,Q, 
and then decreases ~t–1 for relativistic clusters or ~t–3 for 
nonrelativistic ones. Figure 3 shows the time dependence 
of the quasi-stationary magnetic field Hmax(t) (solid curve) 
upon irradiation with a circularly polarised laser pulse with 
an intensity of 1020 W cm–2 (а = 5.2) and a duration of 6 fs 
for an Xe cluster with an initial radius of 50 nm, a density 
ne = 182ncr and xenon ionisation rate Z = 20; the dots show 
the data of the PIC calculation [17]. One can see the coinci-
dence of the time dependence (16) with the results of numer-
ical simulation during the action of the laser pulse and after 
its end.

5. Conclusions

An analytical model is proposed for the generation of a 
large-scale (tens of microns) magnetic field with an inten-
sity of up to several GG, which exists during a picosecond 
time interval in the focal waist of an ultra-high-power short 
laser pulse. This field is formed by relativistic magnetic 
dipoles arising in a gas of neutral nanoclusters under irra-
diation with a short (tens of fs), relativistically intense, cir-
cularly polarised laser pulse. In comparison with our previ-
ous works, we have constructed in this study an analytical 
model of the generation of a magnetic field, which makes it 
possible to take into account the dependence of the field 
strength on the cluster radius and the duration of the laser 
pulse, to study the temporal dynamics of the magnetic field 
during a laser pulse, and also to find the lifetime and 
asymptotics of the dependence of the field on time at large 
(in comparison with the laser pulse duration) time inter-
vals. Note that the amplitude of the quasi-stationary field 
reaches tenths of the laser field amplitude, and the field 
lifetime is determined by the nanocluster expansion time 
and is significantly (tens of times) longer than the laser 
pulse duration. The slow decay of the magnetic field in 
time (~t–1) allows maintaining a magnetic field of ~1 GG 
at picosecond time intervals. Implementation of a cluster 
laser target will allow gigagauss magnetic fields to be gen-
erated under laboratory conditions and the properties of a 
highly magnetised laser plasma to be experimentally stud-
ied. Such studies can be relevant for astrophysical applica-
tions; for example, they make it possible to experimentally 
simulate plasma in the vicinity of neutron stars with a 
superstrong magnetic field.

Appendix. Absorption of circularly polarised 
laser radiation by a nanocluster

When the electron cloud of the cluster is displaced relative to 
the ion core, a returning ambipolar field appears between the 
electron shell and the ion core

4 en
E r3

ep
= ;

as a result, the equation of motion of the electron shell takes 
the form (nonrelativistic case)

m m m vr r r3
1

e e pe e ei
2w=- -o o

	 + [ ( ) ( )]cos sineE kz t kz te e0 x yw w- + - ,	 (A1)

where wpe is the plasma frequency of electrons, and vei is the 
frequency of electron – ion collisions.

The solution to this equation out of resonance in the 
zeroth approximation in kz leads only to collisional absorp-
tion with the coefficient [21]
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Collisional absorption is relevant at the initial stage of inter-
action, when the electron temperature is not too high. When 
the cluster is heated to temperatures

Te » mc W
I1 12

0

2l
+ -d n,

where W0 = 1.37 ́  1018 W mm2 cm–2, the collision frequency 
decreases rapidly and the absorption becomes small. In par-
ticular, at ne = Zni = 8×6 ́  1022 cm–3 (water cluster) and an 
intensity of 1017  W  cm–2 collisional absorption is 5 ́ 10–6; 
therefore, the main mechanism is collisionless resonance 
absorption. 

The solution to equation (A1) at vei = 0 has the form
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Equation (A2) contains a solution to the homogeneous 
equation for the subsequent disclosure of the uncertainty at 
the resonance w ® wpe/ 3 . Outside resonance, solution (A2) 
does not lead to absorption, since 0Er tG H =o . However, as 
w ® wpe/ 3 , it grows linearly with time,
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which corresponds to motion in a circle with a linearly increas-
ing radius, i.e. to resonance with circular polarisation.

Let us find the power absorbed per unit volume:
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Absorbed energy density (integral of power over time) has 
the form
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This formula coincides with formula (12) in [20], where lin-
early polarised radiation was considered, up to a numerical 
factor. The resonance condition  w = wpe/ 3  in the shell of 
the cluster can be fulfilled because:

1) in a real laser field of a time-limited pulse, E0(t) = 
E0exp(–t2/tL2) , in the Fourier spectrum contains a resonance 
frequency;

2) allowance for relativistic corrections will lead to the 
replacement w ® wpe/ Lg , and the condition w = wpe/ 3 Lg  
is more favourable for resonance;

3) expansion of the cluster begins already during the 
action of the laser pulse; therefore, the ratio wpe/w ~ 10, 
which is valid for ‘solid-state’ values of the electron density 
in the cluster shell, becomes less than 10; and

4) when the electron density decreases with increasing 
radius, there is always a resonance point at which the con-
dition  w = wpe/ 3 Lg  is satisfied locally. Thus, in the case 
of circular polarisation, the main mechanism of cluster 
absorption is resonant collisionless absorption, and the 
absorption coefficient is determined by the expression

/
/d d
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where ls is the thickness of the skin layer.
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