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Abstract.  A scheme is proposed for processing optical signals in a 
receiver of a communication system, based on complex fully con-
nected neural networks. The influence of the main characteristics of 
the neural network on the efficiency of nonlinear distortion compen-
sation is studied. A significant advantage of the proposed scheme 
over real-valued neural networks is demonstrated.

Keywords: optical fibre, nonlinear effects, fully connected neural 
networks, mathematical modelling.

1. Introduction

The problem of compensating for signal distortions caused 
by nonlinear influences in optical fibre is one of the key 
issues that need to be addressed in order to further increase 
the throughput of modern information transmission sys-
tems [1 – 3]. To this end, various technologies for the gen-
eration and processing of an optical signal are currently 
being developed. Among such approaches, we should sin-
gle out a family of methods based on the use of the Volterra 
series transfer function [4], digital methods based on ele-
ments of the perturbation theory [5, 6], a nonlinear 
Schrödinger filter and an algorithm utilising reception in 
general with bit-by-bit decision making [7], as well as opti-
cal methods using phase conjugation of a signal [8]. 
Machine learning methods, and neural networks (NNs) in 
particular, have now become especially actively used to 
compensate for nonlinearity in fibre-optic communication 
lines due to the fact that they provide high classification 
accuracy of received symbols at low computational com-
plexity [9 – 12]. In addition, the schemes for processing 
received signals based on machine learning methods can be 
used in dynamically changing communication lines due to 
the possibility of periodic retraining.

In this paper, we propose a scheme based on complex 
fully connected neural networks to compensate for nonlin-
ear effects in communication lines. The proposed scheme is 
compared with a scheme based on linear compensation and 
with a scheme based on real-valued fully connected neural 
networks.

2. Fully connected neural 
network-based scheme 
of compensation for nonlinear effects 

Neural networks are powerful tools that can potentially be 
used to approximate almost any nonlinear function. 
However, without any prior knowledge of the function 
being approximated, this neural network can be quite cum-
bersome, and the learning process can take a lot of time. 
Therefore, at present, an approach is popular in which some 
preliminary knowledge about the nature of the problem 
being solved is incorporated into the NN architecture. The 
approach to compensate for nonlinear effects in the receiver 
of a communication line was first used in [10], where the NN 
architecture was designed by analogy with the digital back-
propagation method [13]. In this paper, we propose to use 
this approach to develop a scheme based on fully connected 
neural networks for compensating for nonlinear distortions 
in fibre-optic communication lines.

The neural network in question (Fig. 1) consists of an 
input layer, in which several received symbols are processed 
simultaneously to take into account the channel memory 
effect; two hidden layers with the same number of neurons; 
and an output layer with one neuron corresponding to the 
predicted (transmitted) symbol. The structure of the input 
layer is as follows: to predict the symbol sent from the trans-
mitter, use is made of the corresponding received symbol, as 
well as the values of its N subsequent and N previous neigh-
bours at the receiver. Thus, 2N + 1 symbols from the receiver 
are used to predict each transmitted symbol.

Since the Schrödinger equation describes the propaga-
tion of complex signals, the proposed NN is also complex-
valued. Complex-valued neural networks are based on the 
description using complex numbers of both the state of the 
neurons themselves and the weight coefficients. Thus, each 
neuron of a complex-valued neural network is represented 
as a separate pair of real numbers, for which the correspond-
ing complex-valued arithmetic has been implemented. This 
approach seems to be more natural when processing received 
symbols in fibre-optic communication lines, which are com-
plex in nature.

Mathematically, a complex-valued neural network is 
equivalent to a real-valued neural network: one complex-val-
ued neuron corresponds to a pair of real-valued ones. At the 
same time, to link two pairs of real-valued neurons, four real 
weight parameters (weights) are required, while two complex 
neurons are linked by one complex-valued weight (two real 
numbers). Thus, a real-valued NN with the number of pairs 
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of real neurons equal to the number of neurons in a complex-
valued network will have twice as many real weight coeffi-
cients, which will significantly complicate the learning pro-
cess. However, due to the fact that one complex multiplica-
tion requires four multiplications of real numbers, the final 
computational complexity of both networks is the same. In 
addition, complex-valued neural networks allow the use of 
complex activation functions corresponding to nonlinear 
effects affecting signals during propagation through optical 
fibre.

The nonlinear activation function of the proposed NN 
corresponds to the compensation of the phase shift of the sig-
nal caused by the nonlinear interaction of signals, and has the 
form:

( ) ef z zzi t
2
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where  gt is a parameter that is optimised during the neural 
network training.

The complex-valued neural network architecture was 
implemented using the TensorFlow 2.0 machine learning 
platform. To find the network weights, we used the adaptive 

moment estimation (Adam) optimisation algorithm, which 
provides an adaptive learning rate for each individual param-
eter. During the optimisation of the weights, the learning rate 
changes in accordance with the estimates of the first and sec-
ond moments of the gradient. The Xavier normal distribution 
was used to initialise the values of the weight coefficients [the 
GlorotNormal() function in the TensorFlow library]. It 
should be noted that for each set of parameters under consid-
eration, several runs were performed with different random 
initial values of all weights, and then the worst results obtained 
were discarded. As an error function, we used the root mean 
square error between the 16-QAM symbols sent from the 
transmitter and the symbols received after applying the NN 
to the training sample.

3. Mathematical modelling

The data transmission system considered in the work is sche-
matically shown in Fig. 2. The communication line consists of 
a transmitter; twenty 100-km-long spans of standard single-
mode fibre (SSMF); erbium optical amplifiers with a noise 
factor of NF = 4.5 dB, used after each span to compensate 
for losses; and a receiver. The transmitter generates 16-QAM 
signals with a symbol rate of Rs = 32 Gbaud. To shape the 
pulses, a root raised cosine (RRC) filter with a roll-off factor 
of 0.1 is used.

The propagation of signals along optical fibre is described 
by the nonlinear Schrödinger equation [1]:
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where A(z, t) is the slowly changing envelope of the optical 
signal; a = 0.2 dB km–1 is the fibre loss; b2 = –21 ps2 km–1 is 
the chromatic dispersion; and g = 1.3 W–1 km–1 is the nonlin-
ear fibre parameter. Propagation equations were solved 
numerically using the symmetric split-step Fourier method 
with a sampling rate of 16 samples per symbol.

After propagation in the channel, the received signal 
passed through a matched RRC filter. Next, the ideal com-
pensation was performed for chromatic dispersion in the 
frequency domain. Then, nonlinear effects were compen-
sated for using the proposed scheme based on complex fully 
connected neural networks. To this end, each complex sym-
bol of the received signal was fed to a separate input node of 
the complex-valued NN. Finally, the signal was demodu-
lated and the bit error rate (BER) was calculated. The pro-
posed scheme was compared with a linear compensation 
scheme (a block with an NN was not used, but only the 
phase of the received signal was restored) and with the non-
linearity compensation method based on real-valued fully 

X+N

X-N

X+1

X0

X-1

Input layer

Hidden layers

Output layer

Figure 1.  Scheme of a complex-valued neural network.
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Figure 2.  Schematic of a fibre-optic communication line; CDC is the chromatic dispersion compensation.
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connected NNs, proposed in [11, 12]. A real-valued neural 
network also had two hidden layers, but, unlike a complex-
valued network, it uses a hyperbolic tangent (tanh) as a non-
linear activation function. For a given neural network, the 
input nodes correspond to real numbers, and so each input 
complex symbol was divided into a pair of real numbers and 
fed into two different neurons at the input layer of the net-
work; in this case, any distinction between the real and imagi-
nary parts of the original symbol was lost. The output layer of 
such a network consists of two real-valued neurons, one of 
which corresponds to the real part of the predicted (transmit-
ted) symbol, and the second one corresponds to the imaginary 
one. For a real-valued NN, the same initial weight distribu-
tion and optimisation algorithm were used as for a complex-
valued network.

4. Results of applying the scheme based 
on complex fully connected neural networks 
to compensate for nonlinear effects 

When examining the proposed scheme, the first step was to 
study the influence of the main NN characteristics on the effi-
ciency of compensation for nonlinear distortions. Thus, the 
dependence of the bit error rate after applying a complex-
valued NN on the number of symbols supplied to the input 
was investigated (Fig. 3).

It can be seen that the efficiency of the neural network 
application increases with increasing number of input sym-
bols used, up to 31 symbols; then, BER changes insignifi-
cantly. This result is valid both for a complex-valued NN 
with 32 neurons on each of the hidden layers, and for a net-
work with 24 neurons. From the figure, however, it follows 
that a neural network with 32 neurons on each hidden layer 
demonstrates greater efficiency with the same number of 
adjacent symbols used. Figure 3 also shows similar depen-
dences for real-valued neural networks (dash-dotted curves). 

For correct comparison, real-valued neural networks had 
twice as many neurons on each hidden layer to provide com-
putational complexity equal to that of a complex-valued neu-
ral network.

It can be seen that, except for the case when only one 
symbol is used at the input, complex-valued neural net-
works provide a significantly lower BER. In the case of 
using one input symbol, the degradation of the complex-
valued neural network can be explained by both with the 
peculiarities of the error backpropagation through the 
implemented nonlinear activation function and by the 
used loss function, at which minimisation of the root 
mean square error does not always lead to a decrease in 
BER. A complex-valued neural network with one input 
symbol was also implemented with the tanh activation 
function (applied separately to the real and imaginary 
parts of a complex neuron); in this case, its efficiency coin-
cided with the result for a real-valued network. Moreover, 
when replacing the last layer of complex- and real-valued 
neural networks with a classification layer (16 classes in 
accordance with the 16-QAM modulation format), the effi-
ciencies of both networks coincided with the result for real-
valued neural networks (see Fig. 3).

Figure 4 shows the dependences of the BER coefficient 
on the number of neurons on each of the hidden layers for 
neural networks with complex- and real-valued architec-
tures. For real-valued neural networks (upper axis), the 
scale was chosen so that networks with the same computa-
tional complexity were located on the same vertical line 
(for example, a complex-valued neural network with 32 
neurons on each of the hidden layers and a real-valued net-
work with 64 neurons). Thus, in each case, the number of 
input symbols was equal to 21. It is seen that a complex-
valued NN provides a lower bit error rate compared to a 
real-valued network under the same computational com-
plexity. In addition, the minimum achievable bit error rate 
for a complex-valued network is also lower.
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Figure 3.  (Colour online) Dependences of the bit error rate on the num-
ber of symbols at the input for complex-valued networks with 32 and 24 
neurons on hidden layers (solid curves), as well as for real-valued net-
works with 64 and 48 neurons on each hidden layer (dash-dotted 
curves).
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Figure 4.  Dependences of the bit error rate on the number of neurons 
on each hidden layer for complex- (solid curve) and real-valued (dash-
dotted curve) neural networks (for a real-valued network, the number 
of neurons was doubled; in both cases, 21 symbols were used at the 
input). The dashed line corresponds to the linear compensation 
scheme.
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It should also be noted that there is some trade-off 
between the efficiency of a neural network and its compu-
tational complexity. This can be seen, for example, from 
Fig. 3. Thus, receiving 31 symbols at input, a complex-val-
ued neural network with 24 neurons on each hidden layer 
provides a lower (by about 8 %) efficiency in terms of BER 
than a neural network with 32 neurons, but has less com-
putational complexity. This is demonstrated even more 
clearly in Fig. 4, where, for a fixed number of input sym-
bols, an increase in the efficiency of the neural network is 
observed with an increase in the number of neurons on hid-
den layers, which corresponds to an increase in computa-
tional complexity.

Figure 5 shows the dependences of the bit error rate on the 
initial signal power for various nonlinear compensation 
schemes. It can be seen that, due to the effective compensa-
tion of nonlinear effects, the use of a complex-valued NN 
makes it possible to reduce the BER at an optimal power by 
53 % compared to the linear compensation scheme and by 
40 % compared to the real-valued NN. It should be noted that 
both considered neural networks had the same computational 
complexity.

5. Conclusions

The paper proposes a complex-valued fully connected neural 
network-based scheme for processing optical signals in the 
receiver of a communication system. This scheme is employed 
to study the efficiency of compensation for nonlinear effects, 
depending on the parameters of the neural network, i.e. the 
number of processed symbols at the input and the number of 
neurons on hidden layers. The efficiency of signal processing 
of the proposed scheme is compared with that of a scheme 
based on real-valued neural networks, and a significant 
advantage of complex-valued neural networks is demon-
strated.
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Figure 5.  Dependences of the bit error rate on the initial signal power 
for a linear compensation scheme (dashed line), complex- (solid line) 
and real-valued (dash-dotted line) neural networks (64 and 32 neurons 
were used on each hidden layer for a real- and complex-valued network, 
respectively; at input there were 31 symbols).


