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Abstract.  Simulation of light propagation by the statistical Monte 
Carlo (MC) method is widely used in many fields, especially in 
astrophysics, atmospheric optics, ocean optics, and nuclear medi-
cine. In the optics of biological tissues, the MC method is used to 
simulate the luminous flux, which is formed during various medical 
therapeutic or diagnostic procedures inside a biological tissue and 
on its surface. In such calculations, the MC method is commonly 
considered as a reference one, which ensures an arbitrarily high 
accuracy with an increase in the number of ‘photons’. However, it 
can be shown that this is not always the case. In this paper, in the 
methodological aspect, the idealised one-dimensional problems of 
the transport theory for a turbid medium with continuous absorp-
tion and scattering and a turbid medium with discrete scatterers 
inside a continuously absorbing medium are considered. Their 
exact analytical solutions are presented and compared with the 
results of statistical modelling by the MC method. It is found that 
the use of classical probabilistic parameters for a medium with con-
tinuous absorption and scattering in the MC algorithm leads to a 
systematic method error in determining the values of radiation 
fluxes for biological media with discrete scattering, up to 10 % for 
fluxes at the boundary in some cases. The causes of the error are 
discussed and it is shown how to modify the probabilistic parame-
ters of the MC algorithm to eliminate it.

Keywords: light propagation, turbid medium, biological tissue, 
transport theory, Monte Carlo method, scattering coefficient, 
absorption coefficient, albedo.

1. Introduction 

As a rule, any tomographic or spectrophotometric diagnostic 
problems in biology and medicine are associated with the 
solution of inverse problems [1, 2]. The accuracy of the solu-
tion of inverse problems is primarily determined by the accu-
racy of the formulation and solution of the direct problem. 

For spectrophotometric problems, the most used analytical 
theory today, describing the propagation of light in turbid 
(light-scattering) media at the macrolevel, is the photometric 
(kinetic) transport theory (TT), ideologically based on the 
Boltzmann kinetic equation. It was substantiated and devel-
oped in the XX century in the classical papers by Khvolson, 
Kubelka – Munk, Gurevich, Milne, Chandrasekhar, 
Ambartsumyan, Ishimaru and many other authors (see, e.g., 
[3 – 6]). However, no exact analytical solution of the general 
integral-differential radiation transfer equation (RTE) in 
closed form has been found. Therefore, at the end of the 20th 
century, with the creation of powerful computers, the main 
attention of researchers switched to a statistical numerical 
method for calculating optical fields, the Monte Carlo (MC) 
method (see, e.g, [7 – 10]). In biotissue optics, the MC method 
in most cases is understood today as statistical modelling of a 
probabilistic walk of a conditional ‘photon’ – a classical, non-
quantum, object (analogue of a zero-size gas molecule), or a 
packet of such photons – inside a biological tissue. In this 
case, the random free paths of photons, the probabilities of 
their scattering and absorption in the medium are closely 
related to the TT and depend on the deterministic radiation 
absorption coefficient in the medium, the albedo of single 
scattering (SS) and the phase scattering function (for spatial 
problems) [9, 10]. 

It is important to note here that the classical photometric 
RTE is originally formulated for a macroscopically isotropic 
medium under the assumption that it a priori has certain 
averaged coefficients of absorption ( ma) and scattering ( ms) 
(with the dimension cm–1) independent of each other. The 
medium microstructure and the methods for obtaining these 
coefficients are usually not considered in the foundations of 
the theory [4 – 6]. The coefficients are considered to be given. 
This is mathematically equivalent to an idealised medium that 
continuously absorbs and scatters light as it propagates along 
any infinitely small segment dx of the path, which yields equa-
tions for a smooth brightness function. Later (or in parallel), 
RTE was successfully used in the physics of ionising radiation 
to describe scattering by particles (atoms, electrons, protons) 
– spatially discrete structures (centres) that scatter and absorb 
light. Today, such problems of scattering by particles are rou-
tine, e.g., in radiation medicine. However, in the optical range 
of the spectrum, biological tissues and media are continuous 
absorbers, but discrete scatterers [10, 11]. The absorption of 
light can be assumed occurring continuously throughout the 
thickness of the biological tissue in accordance with the 
Bouguer exponential law, while the scattering takes place 
only on inhomogeneities of its cellular structure, which are 
spaced discretely within the absorbing medium. Therefore, it 
is natural to pose a question of how correct it is to use the 
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probabilistic parameters of a continuous medium in the MC 
algorithm, as generally accepted in biomedical optics, when 
considering media with continuous absorption but discrete 
scattering. It seems that this question has not come to the 
attention of researchers until recent time. 

Recently, in [12,13], we showed by particular examples the 
presence of discrepancies between the results of numerical 
simulations by the MC method with the classical probabilistic 
parameters of a continuous medium and exact analytical 
solutions of differential TT equations for the same initial 
problems, but for a medium with continuous absorption and 
discrete scattering. The purpose of this work is to show the 
methodological differences in the formulation of problems 
and in the determination of the probabilistic parameters for 
the MC method in the case of media with continuous and dis-
crete scattering and continuous absorption of radiation. 

2. Preliminary remarks to the formulation  
of model problems 

Since we are considering the methodological issue of discrep-
ancies in the formulation of problems and in their solutions 
for media with continuous and discrete scattering, it is easiest 
to do this by the example of the simplest one-dimensional 
(1D) problems, for which there are exact and illustrative ana-
lytical solutions in a closed form [3, 5, 11, 12, 14]. Although 
1D problems seem to be far from the real physical world, they 
are the basis for the phenomenological substantiation of the 
Bouguer exponential law in photometry [15] and were repeat-
edly used in the works of Schuster, Schwarzschild, Gurevich, 
Kubelka, Munk and other authors [5, 6]. Therefore, method-
ologically, 1D problems are reasonably substantiated in TT 
and, moreover, have a number of advantages. These prob-
lems not only have exact analytical solutions that can be eas-
ily analysed, but also remove the problem of taking into 
account the wave properties of electromagnetic radiation in 
TT, which are often argued about, because no transverse 
wave is realisable in 1D space. Only the basic photometric 
formulation of the ray problem remains. The phase scattering 
function is also excluded from consideration. In the 1D prob-
lem, it degenerates into a single value of the coefficient of 
back reflection (scattering) of radiation from the boundaries 
of inhomogeneities inside the medium. It is important to 
emphasise that the above applies only to truly 1D problems, 
in which light propagates in the form of an infinitely thin ray 
along a single X axis. It is exactly these problems that will be 
considered below. 

Sometimes in TT, 1D problems are understood as propa-
gation of a wide collimated beam of light (in electrodynamics, 
a plane electromagnetic wave), as, e.g., in the classical Milne 
problem [4, 6]. Another example is the problem of projecting 
3D light propagation onto a single axis, which was solved by 
Kubelka and Munk, with the formulation of an additional 
closing condition [5]. These tasks are reduced to solving 1D 
problems. However, we will not consider them here, since 
solving these problems is more complicated and not so clear. 
We are only interested in the simplest phenomenological for-
mulation of the ray energy (photometric) stationary problem 
of the transfer of power (energy) of radiation by an infinitely 
thin beam along one single X axis (there are neither other 
axes, nor angular scattering). The MC method can also be 
easily implemented and justified for such 1D problems. This 
simplifies the problem. If there is a fundamental methodolog-
ical difference in the formulation and solution of problems 

for media with continuous and discrete scattering, it is 
expected to manifest itself immediately in such idealised 1D 
problems, without complicating them with other directions of 
radiation propagation, phase scattering functions, etc. The 
nonstationarity will be also an unnecessary complication, and 
taking it into account should not lead to fundamentally dif-
ferent results. 

3. Model problems in the single scattering 
approximation 

3.1. Continuous medium with continuous absorption and 
continuous scattering 

Let us first consider the classical TT problem of light propa-
gation in a continuous medium with continuous absorption 
and continuous scattering in the SS approximation (Fig. 1). 
The SS approximation also simplifies the formulation and 
solution of the problem. It means that a light beam with 
power F0, penetrating from the outside into a turbid medium, 
as it propagates in the positive direction of the X axis inside 
the medium, permanently and irreversibly loses part of its 
power on each elementary segment of the path dx due to 
absorption and scattering. The light flux inside the medium, 
F+ (x), will be a coordinate function sought. The backward 
flux F– (x) formed by scattering of the flux F+ (x) in the 
medium propagates in the opposite direction of the X axis, 
but is no longer scattered. It can only lose power through 
absorption. In a word, any photon in the flux F+ (x), once 
elastically scattered and having changed its direction to the 
opposite, in the reverse flux F– (x) no longer experiences scat-
tering and can only be absorbed. The medium where the radi-
ation propagates is characterised by generally accepted deter-
ministic optical properties, the absorption ma and scattering 
ms coefficients, independent of each other and considered to 
be known. These coefficients do not necessarily coincide with 
those for real 3D media*. 

The exact solution to this problem has long been known 
(see, e.g., [16]). The system of differential equations
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is solved, which is phenomenologically ‘derived’ (in fact, pos-
tulated) in TT, based on simple logical considerations that the 
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F–(x) F–(x')
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x
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Figure 1.  Statement of the 1D problem in the SS approximation for a 
medium with continuous absorption and continuous scattering.

* When obtaining the closing condition, Kubelka and Munk, for exam-
ple, showed that there might be a difference in the interpretation of such 
coefficients for 3D and 1D problems [5].
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direct flux F+ (x), as it propagates, is absorbed and scattered 
at the path segment dx, whence the first equation of the sys-
tem follows (if we assume the independence of the acts of scat-
tering and absorption). The reverse flux F– (x), formed with-
out losses during the scattering of the flow F+ (x) (the second 
term on the right-hand side of the second equation), is then 
only absorbed (the first term on the right-hand side of the 
second equation). Let us present the solution of system (1) 
with the simplest boundary conditions for a semi-infinite 
medium without taking into account the reflection at the 
outer boundary: F+ (x) = F0, F– (¥) = 0 [16]. Under such 
boundary conditions, the sought forward flux has the form of 
an exponentially decaying function similar to the Bouguer 
law:

F+ (x) = F0 exp[– (ma +  ms ) x], 	 (2)

and the reverse flux is found by integration: 

3

( ) [ ( )] ( )exp dF x x x F x xa s
x

m m= - -- +l l ly .	 (3) 

The flux F– (x) also decays exponentially with increasing x: 

( ) [ ( ) ]expF x F x
2 a s

s
a s0 m m

m
m m=

+
- +- ;	 (4) 

however, as it propagates back to the illuminated ‘surface’, it 
tends to increase due to the contribution of the scattered com-
ponent of the flux F+ (x). 

Application of the classical MC method to such a problem 
yields a solution that ideally coincides with the exact analyti-
cal solutions (2) and (4). When constructing an MC simula-
tion algorithm, the main difficulty is to express the probabilis-
tic parameters of the model in terms of the physical optical 
properties of a turbid medium. For the 1D problem and the 
SS approximation, there are three such parameters: two pho-
ton mean free paths in the forward and backward directions 
(l+ and l–, respectively) and the photon scattering probability 
Ps. In biomedical optics, they are usually specified in the MC 
algorithm in the following (‘classical’) way. The classical scat-
tering probability Ps

cl is equated to the SS albedo [7, 17]:

clP s
a s

s

m m
m

=
+

.	 (5) 

In this case, the connection between expression (5) and 
Eqns    (1) – (4) is usually not explained in the papers, but is 
considered a priori clear. The random value of the photon free 
path length l+cl inside the flux F+ (x) is calculated at each itera-
tion step by generating a random number x1 uniformly dis-
tributed over the segment [0; 1] according to the formula

ln
l

a s

1

m m
x

=-
++

cl ,	 (6) 

taking into account the exponential probability distribution 
function for l+cl. 

To understand further conclusions, it is methodologically 
important to emphasise that the form of the probability distri-
bution function for l+cl [exponential, as follows from Eqn (2)] 
must be known to obtain and substantiate Eqn (6). For the 
reverse flux (for l–), a different formula is required. The differ-
ence is determined by the logic of the SS approximation. The 
flux F– (x) in the SS approximation is not scattered, so for it ms 
= 0. Then, by analogy with Eqn (6), we use the expression

ln
l cl

a

2

m
x

=-- ,	 (7) 

where x2 is the generated random number, uniformly distrib-
uted on the interval [0; 1], like x1. 

A comparison of the exact analytical solution with the 
numerical one, obtained by the MC method, for fluxes inside 
and on the surface of such a continuous 1D medium is shown 
in Fig. 2. The complete coincidence of the solutions is obvious 
here. It is described in many basic textbooks. 

3.2. Medium with continuous absorption  
and discrete scattering 

When considering discrete scatterers inside a continuously 
absorbing 1D medium, the analytical solution of the problem 
is not so obvious, although it is also known [11, 14]. The first 
difficulty arises here with determining the value of ms. Each 
single ith scatterer (inhomogeneity) inside such a turbid 
medium scatters (reflects) back a certain fraction of the inci-
dent radiation Ri £ 1 (for example, this is an analogue of the 
Fresnel reflection coefficient R). How to find ms if the concen-
tration of inhomogeneities in the medium mr is known? The 
classical monograph [5] gives an intuitive expression ms = mrR. 
However, it can be shown that this is not entirely true. 

Following Ref. [14], let us consider the interval Dx inside 
such a 1D medium, which contains N identical scattering 
inhomogeneities (Fig. 3). Let the distance between them be 
the same and equal to Dx/N *. Without loss of generality, we 
also assume that all Ri = const = R, and the distances 
between the extreme inhomogeneities and the boundaries Dx 
are Dx/(2N). This formulation of the problem and the struc-
ture of the Dx interval simplify the final analytical solutions 
and their derivation. In particular, to derive the differential 
equation for the flux F+ (x), it suffices to consider the limit
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Figure 2.  Numerical solutions by the MC method (circles) and analyti-
cal solutions (solid curves) of the 1D problem in the SS approximation 
for a medium with continuous absorption and continuous scattering. 
The values of the fluxes F+ (x) and F– (x) are normalised to F0.

* It is not difficult to show that random distances, for example, with a 
normal distribution around Dx/N, will give, on the statistically average, 
a similar result.
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Noting that

( ) ( ) ( ) ( )expF x x F x x R1a
NmD D+ = - -+ + ,	 (9) 

using for the concentration of inhomogeneities the definition 
[11, 14] 

lim
x
N

0x
m

D=
"

r
D

,	 (10) 

and disclosing the 0/0 uncertainties in Eqn (8), we easily come 
to a differential equation identical to the first equation of sys-
tem (1), if we introduce the notation

ms = – mr ln(1 – R).	 (11)

Note that Eqn (11) differs from the expression ms =  mr R pro-
posed by Ishimaru and tends to it only for R <<  1. However, 
if we substitute ms (11) into the first equation of system (1), 
then the differential equations for F+ (x) turn out to be identi-
cal in both cases. 

Deriving the differential equation for F– (x) is somewhat 
more complicated. The flux F– (x) consists of two parts. The 
first part is the flux FS  Dx (Dx) backscattered from the segment 
Dx, while the second part is the flux F– (x + Dx) that passed 
from right to left through the segment Dx and was attenuated 
due to absorption. Mathematically, this can be represented as

F– (x) = FS  Dx (Dx) + F– (x + Dx)exp(–ma Dx).	 (12)

To find FS  Dx (Dx), it is necessary to take into account the 
scattering from all inhomogeneities in the segment Dx. For 
the first inhomogeneity, we can write the expression

R( ) ( ) ( / )expF x F x x Na1 mD D= --
+ ,	 (13) 

for the second

R( ) ( ) ( / ) (1 ) ( / )exp expF x F x x N R x N2a a2 m mD D D= - - --
+

	 ( ) ( / ) (1 )expF x x N R2 a1 mD D= - -- .	 (14)

Then for the Nth inhomogeneity, we will have the relation

( ) ( ) [ 2 ( 1) / ] ( )expF x F x N x N R1aN
N

1
1mD D D= - - -- - - .	 (15) 

The sum of all ( )F xi D-  is a sum of a geometric progres-
sion, therefore FS  Dx (Dx) can be easily found in explicit form:
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Finding the limit of the ratio of ‘increment’ of F– (x) on the 
segment Dx to Dx at Dx ® 0, we obtain a differential equation 
for  F– (x) [14]: 
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a
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r
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is the backscattering coefficient for the flux F+ (x). We can see 
that s2 !b m+ . 

Thus, the system of differential equations solved in the SS 
approximation for a medium with continuous absorption and 
discrete scattering will have the form 

( )
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F x1b=-

+ +
+ ,	

(19)
( )
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x

F x
F x F xa 2m b= -

-
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+
+ ,

where for the attenuation coefficient of flow F+ (x) the nota-
tion

a s1b m m= ++ 	 (20)

is introduced. 
In spite of all the external similarity, system (19) is funda-

mentally different from system (1), since in a general case 
s2 1b m+ . Only for ma = 0 (i.e., in the limit ma ® 0) ,s2b m=+

which means that not all scattered photons of the flux F+ (x) 
are converted by the segment Dx into photons of the flux 
F–(x). Some of them are lost due to absorption immediately 
within the segment Dx. Thus, in the presence of discrete scat-
terers inside a continuous absorbing medium at 0a !m  values 
of F–(x) will differ from those obtained using Eqn (4).

Under the same boundary conditions as indicated in 
Section 3.1, system (19) has solutions

( ) ( )expF x F x0 1b= -+
+ ,	 (21)

( ) ( )expF x F x
2 a s

0
2

1m m
b

b=
+

--

+
+ .	 (22)

A numerical comparison of these solutions and the solutions 
given in Section 3.1 is shown in Fig. 4 for the same values of 
ma and ms as in Fig. 2. It can be seen that the values of the 
fluxes F+ (x) in these two cases do not differ, since the value of 
1b+ remains unchanged. However, the difference in the fluxes 

F– (x) near the outer boundary of the medium is clearly mani-
fested. 

Obviously, the numerical calculation by the MC method 
with classical probabilistic parameters for a medium with 
continuous scattering in this case of discrete scatterers will 
also give the value of F– (x), which differs from the exact solu-
tion (22), like the analytical solution in Section 3.1. Then the 
question of how the probabilistic parameters of the MC algo-
rithm should be changed in order to numerically obtain a 

F–(0)

F+(x +Dx)F+(x)

F–(x + Dx)F–(x)
x = 0

F0

XR R R R
ma mama ma

Dx
N

Dx
N

Dx
2N

Dx
2N

Dx

Figure 3.  Statement of the 1D problem in the SS approximation for a 
medium with continuous absorption and discrete scattering.
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result corresponding to (22) is legitimate. We dare to suggest 
an easy way. 

According to Eqn (21), the function 

( ) ( )expB x x1 1b= - -+
+l l 	 (23) 

determines the fraction of photons ‘lost’ by the flux F+ (x) due 
to scattering and absorption along the path segment [0; x' ]: 
0 £ B+ (x' ) £ 1. When proceeding to the probabilistic model, 
it is replaced by the probability distribution function Dl+(x' ) 
of the random variable l+ that simulates it: 

B+ (x' ) = Dl+(x’ ) º P {l+ £ x'},	 (24)

determining the probability that l+ £ x', and also defined in 
the interval [0; 1]. Further, according to the inverse transfor-
mation method, to find the random variable l+ with a given 
distribution  Dl+(x' ), we can take a random variable x1 uni-
formly distributed on the interval [0; 1], find the inverse func-
tion Dl

1-
+
(x1) and use it to calculate l+ [7, 18]. The resulting 

random variable l+ will have the distribution Dl+(x' ). 
Randomly generating different x1 and taking into account 
that the random variables 1 – x1 and x1 have the same uniform 
distribution on the segment [0; 1], symmetric with respect to 
the value x1 = 0.5, we obtain the required set of l+ when gen-
erating x1:

( )
ln ln

l D
a s

l
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1
1

1 1x
b

x
m m

x
= =- =-

++
-

++
.	 (25) 

Here l+ coincides with l+cl (6). 
For the photon flux F– (x) in the SS approximation

( ) ( )expB x x1 am= - -- l l .	 (26)

By analogy with l+, in this case we arrive at the expression

ln
l

a

2

m
x

=-- .	 (27)

Based on the empirical (frequency) definition of the prob-
ability as the frequency of desired event occurrence against 
the background of all possible events, the probability of scat-

tering Ps on any infinitely small segment Dx inside the medium 
should be determined by the fraction of scattered F+ (x) pho-
tons, which form the F– (x) flux, against the background of all 
photons lost by the flux F+ (x). This fraction is determined 
when deriving the system of equations (19) and is equal to 

( )F x x2b D+
+ . In this case, the complete set of events are all 

photons lost by the flux F+ (x) on the segment Dx, i.e., the 
value of ( )F x x1b D+

+ . The ratio of these quantities will be 
exactly the required scattering probability Ps:

Ps
1

2

b

b
=

+

+

.	 (28)

Thus, the complete set of probabilistic parameters of the 
MC method in the SS approximation for a 1D problem with 
discrete scatterers should look as follows:

ln
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1

1

b

x
=-+ +

,  Ps
1

2

b

b
=

+

+

,  
ln

l
a

2

m
x

=-- .	 (29)

Comparing Eqn (29) with Eqns (5) – (7), one can notice 
that the probabilities Ps

cl and Ps are different, since in the gen-
eral case s2 !b m+ . As shown in Fig. 5, the solution by the MC 
method with probabilistic parameters (29) ideally coincides 
with the analytical solution (22) for the flow F– (x), while the 
classical MC method gives a solution with a systematic error 
due to the fact that Ps

cl
s!P . In short, the use of the SS albedo 

for calculating the scattering probability Ps in this problem is 
no longer correct. 

4. Model problem for multiple scattering 

The problem of multiple scattering inside a 1D medium with 
continuous absorption and discrete scattering is also quite 
indicative. Although we have previously reported on the 
results obtained for it [12], it is interesting to present the solu-
tion of this problem and give its comparative analysis with the 
numerical solution by the MC method in order to formulate 
substantiated conclusions drawn from the results of the study. 
For multiple scattering in a medium with continuous absorp-
tion and discrete scattering, the system of modified Kubelka–
Munk equations [11, 14]
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(solid curves) and a medium with continuous absorption and discrete 
scattering (dashed curves). The values of the fluxes F+(x) and F–(x) are 
normalised to F0.
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Figure 5.  Analytical solutions (solid curves) and numerical solutions by 
the MC method with different probabilistic parameters of the 1D prob-
lem in the SS approximation for a medium with discrete scattering (tri-
angles) and a medium with continuous absorption and continuous scat-
tering (circles). The values of the fluxes F+(x) and F_(x) are normalised 
to F0.
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Here not only s2 !b m , but also a s1!b m m+ . The solution of 
system (30) is known and has the form [5]

( ) ( ) ( )exp expF x C x C x1 2a a= - ++ ,	
(34)

( ) ( ) ( )exp expF x C A x C A x1 2a a= - +- - + ,

where C1 and C2 are the integration constants determined 
from the boundary conditions (see Section 3.1); 

1
2

2
2a b b= - ;  A

1

2

b a

b
=

-
+ ;  A

A
1

=-
+

. 

Since the multiple scattering regime is realised in the 
medium, the photons are equally scattered and absorbed 
along the path of their propagation both in the flux F+ (x) and 
in the flux F– (x). Therefore, in the numerical simulation by 
the MC method, the use of a single photon mean free path 

ln
l

1b
x

=- 	 (35) 

is justified. 
As shown in Ref. [12], taking into account (35), the cor-

respondence of the analytical results to the numerical results 
of the MC simulation both for the flux F+ (x) and for the flux 
F– (x) is achieved when the scattering probability is specified 
in a form similar to (28): 

Ps
1

2

b

b
= .	 (36) 

The results of comparing the analytical solution (34) with 
allowance for (31) and (32) and the numerical solution by the 
MC method with different probabilistic parameters for mul-
tiple scattering are presented in Fig. 6. In this case, parame-
ters (35) and (36) with b1 = ma + ms and b2 = ms were used as 
classical probabilistic parameters in the MC algorithm. The 
discrepancy in the results for fluxes is seen to reach 10 % at the 

boundary of the medium. It is important that in the case of 
multiple scattering, the discrepancy between the results of the 
classical simulation by the MC method and the exact analyti-
cal results (34) is observed even for the flux F+ (x). To elimi-
nate this discrepancy, it is necessary to use the correct proba-
bilistic parameters b1 (31) and b2 (32). 

5. Conclusions 

We analysed the applicability of the probabilistic parameters 
of the numerical MC algorithm generally accepted in biomed-
ical optics for problems of light transfer in turbid media with 
continuous absorption and discrete scattering. For this pur-
pose, we obtained exact analytical solutions of model 1D 
problems for such media and compared them with the results 
of numerical modelling by the MC method. Comparison has 
shown that the use of generally accepted (classical) probabi-
listic parameters of the MC algorithm causes a systematic 
numerical error for the considered turbid media, which is not 
eliminated by increasing the number of played photons. 
Additionally, we substantiated the necessary refined probabi-
listic parameters for numerical simulation by the MC method 
in the case of media with discrete scattering and showed that 
their application leads to perfect coincidence of numerical 
and analytical results. Thus, one of the main conclusions for-
mulated from the results of the study is the conclusion that it 
is necessary for each specific problem to choose reasonable 
values of the probabilistic parameters of the MC algorithm, 
which may differ from the generally accepted ones. 

Another important conclusion is that the choice of ade-
quate probabilistic parameters based on a priori phenomeno-
logical concepts is most likely impossible. It is hardly possible 
to guess the form of Eqns (31) and (32). Consequently, for a 
competent substantiation of the probabilistic parameters, it is 
necessary to have an exact form of expressions for the coeffi-
cients of the original equations, which can be obtained only 
analytically based on ideas about the internal structure of the 
medium, as was done, for example, for  b2+ (18). Strictly speak-
ing [see the remark after Eqn (6)], all classical probabilistic 
parameters are also based on well-known analytical solu-
tions, for example, on expression (2), in which the coefficients 
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Figure 6.  Analytical solutions (solid curves) and numerical solutions by 
the MC method with different probabilistic parameters of the 1D prob-
lem with multiple scattering for a medium with discrete scattering (tri-
angles) and a medium with continuous absorption and continuous scat-
tering (circles). The values of the fluxes F+(x) and F_(x) are normalised 
to F0.
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of system (1) are given a priori. The MC method allows only 
finding a numerical solution of the system of initial equations 
in the form in which they are formulated. If the original sys-
tem is formulated with incorrect coefficients, then its solution 
by the MC method will also be erroneous, and vice versa. It is 
another matter that the discrepancies in the results obtained 
in this work when using the classical probabilistic parameters 
of the MC algorithm are so far not very large for 1D prob-
lems, about 10 % or less. If they do not increase in 2D and 3D 
problems, which requires additional investigation, this may 
be sufficient for many practical problems, for which an ana-
lytical solution is unknown. In particular, when searching for 
an unknown analytical solution and unknown exact expres-
sions for the coefficients of the initial equations of any prob-
lem in TT, the classical version of the MC method immedi-
ately gives a certain reference point when solving with an 
accuracy of no worse than 90 % (according to our data), and 
this is its undoubted plus.
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