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Abstract.  We propose to solve the inverse problem of diffuse fluo-
rescence tomography (DFT) – reconstruction of the spatial distri-
bution of the fluorophore in biological tissues – by a method based 
on Tikhonov regularisation with the nonnegativity condition 
(TRNC) of the reconstructed components of the solution vector. 
Model experiments on a biotissue phantom demonstrate that the 
TRNC method allows for a more accurate reconstruction of the 
distribution of the fluorophore concentration, and is also more sta-
ble in comparison with the known algorithms used in DFT, such as 
ART, SMART, NNLS, etc.

Keywords: diffuse fluorescence tomography, Tikhonov regularisa-
tion, nonnegativity condition for the solution vector, fluorescence 
molecular imaging.

1. Introduction 

Fluorescence imaging, with its high molecular sensitivity, is a 
widespread method for studying biological objects of various 
sizes, from submicrons to a few centimetres [1]. The methods 
of fluorescence microscopy [2] and nanoscopy [3] make it pos-
sible to visualise subcellular structures with high spatial reso-
lution from submicrons for laser scanning microscopy sys-
tems to several nanometres in superresolution microscopy. 
However, the depth of such studies is limited by the photon 
mean free path in tissue, which is about 100 mm. When study-
ing objects on larger scales exceeding one transport mean free 
path (about 1 mm in biological tissues), the effects of multiple 
scattering become more significant, resulting in blurring the 
probe beam, which does not allow micron-scale spatial reso-
lution to be achieved. Nevertheless, fluorescence imaging of 
living objects on scales of several millimetres and more is an 
equally urgent problem and is used both in clinical diagnos-
tics and in laboratory studies on animals. For example, fluo-
rescence imaging using contrast agents makes it possible to 
assess tumour boundaries with better accuracy during organ-
preserving surgeries [4, 5], as well as to visualise the circula-
tory and lymphatic systems [6]. In studies on laboratory ani-
mals, which are carried out in the field of experimental oncol-
ogy, fluorescently labelled tumour lines [7] are used to 
determine the size of the primary tumour and the presence of 
metastases [8], to study complex molecular processes such as 

apoptosis [9], to determine the pH level in a tumour [10], etc. 
With an increase in the depth of a fluorescently labelled inclu-
sion, e.g., an experimental tumour expressing fluorescent pro-
teins, the blurring of its fluorescent response on the surface of 
an object increases, leading to larger errors in determining its 
true size and localisation. 

Various instrumental approaches are used to reduce the 
blurring effects of fluorescent objects associated with light 
scattering. The use of raster scanning of an object with a nar-
row mono-directional excitation source (raster-scan illumina-
tion) synchronously with a detector (raster-scan detection), 
which registers fluorescence from the same area, makes it pos-
sible to narrow the sensitivity area at each position of the 
source and detector [11]. In this case, systems with a transil-
lumination configuration, in contrast to a reflection one, are 
less sensitive to the depth position of the fluorescent inclusion 
[12 – 14].

The techniques listed above allow one to decrease the 
blurring effect in two-dimensional fluorescent images in com-
parison with standard broad beam illumination with wide-
field camera detection, but they do not provide full three-
dimensional information about the distribution of the fluoro-
phore in the object of study. 

The problem of three-dimensional reconstruction of the 
spatial distribution of the fluorophore concentration is solved 
by the method of diffuse fluorescence tomography (DFT) 
[15], based on obtaining a set of projections of the object irra-
diated by a source that excites fluorescence, and registering 
the emission with subsequent reconstruction of the distribu-
tion of the fluorophore in tissue by mathematical methods. 
This approach usually uses plane or cylindrical scanning 
geometries [16]. There is also a modification of DFT based on 
the use of structured illumination with different spatial fre-
quencies [17]. 

Since multiply scattered photons are registered in the 
DFT, there are a number of factors that limit the accuracy of 
the solution to the inverse problem. They include high sensi-
tivity to boundary conditions, limitations of well-known ana-
lytical models, e.g., the diffusion approximation of the radia-
tion transfer equation, high sensitivity to noise, both instru-
mental and associated with an autofluorescence background. 
All this leads to the ill-posedness of the inverse problem and, 
as a consequence, to high requirements for both the instru-
mental part and the reconstruction algorithms, which are 
being permanently improved. 

Since the propagation of optical radiation in biological 
tissues is described by the radiative transfer equation (RTE) 
[18], which has an integro-differential form, it is not possible 
to obtain an analytical expression for the spatial distribution 
of the fluorophore concentration, and various numerical 
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algorithms are used to solve the DFT problem. In the over-
whelming majority of cases, the concentration of the fluoro-
phore can be considered relatively small in the sense that the 
contribution to the absorption coefficient of the probe radia-
tion associated with the presence of the fluorophore is much 
less than the intrinsic absorption coefficient of biological tis-
sues. In this case, the DFT problem is reduced to solving the 
Fredholm equation of the first kind [19], which, in turn, is 
reduced to a system of linear equations. 

Unlike reconstruction in X-ray and magnetic resonance 
tomography, the matrix of the DFT system is nonsparse; 
moreover, due to the singularity of the Fredholm equation 
kernel, the system is poorly conditioned [20]. This means that 
small deviations in the experimental data lead to large changes 
in the reconstruction results. The elements of the inverted 
matrix are also calculated with some error, which is due to the 
imperfection of the applied model of light propagation in tis-
sues. To improve the accuracy of reconstruction in DFT, 
models of radiation propagation in randomly inhomoge-
neous media are used, which are closer to reality than the tra-
ditionally used diffusion approximation of RTE, e.g., Monte 
Carlo simulation [21] and hybrid analytical models [22]. To 
take into account the boundary conditions in the radiation 
propagation model correctly, the anatomical structure of the 
object, obtained using X-ray or magnetic resonance tomogra-
phy, is used [23 – 25]. It is also important to take into account 
the autofluorescence background in the registered signal, 
which is possible using multispectral measurements [26, 27]. 
The number of measurements (projections) at different posi-
tions of the radiation source and detector should significantly 
exceed the number of reconstructed elements (voxels). 

In addition to the approaches listed above, the algorithm 
for solving a system of linear equations itself plays an equally 
important role in DFT. In algorithms, it is important to max-
imise the use of a priori information about the reconstructed 
vector, for example, about the location and shape of the fluo-
rescent inclusion. The ‘natural’ a priori knowledge in DFT is 
the nonnegativity of the fluorophore concentration. Earlier it 
was shown that the use of this condition significantly increases 
the condition number of the inverse problem [28]. Nevertheless, 
despite the wide variety of algorithms used in DFT, only a few 
of them correctly use this condition. Due to the ill-posedness 
of the inverse DFT problem, it is also reasonable to use regu-
larisation procedures in algorithms. 

The classical method used in DFT is the algebraic recon-
struction technique (ART) [29 – 31], which uses zeroing of 
negative components of the current vector at each iteration 
step, which is incorrect from the mathematical point of view 
due to the convergence uncertainty of such an algorithm. A 
modification of this algorithm, the simultaneous multipli-
cative algebraic reconstruction technique (SMART) [32], 
correctly uses the nonnegativity condition, but has a very 
low convergence rate. Another method, the nonnegative 
least squares (NNLS) method [33], which correctly takes 
into account the nonnegativity condition, does not have any 
regularisation procedures, which leads to the solution insta-
bility. 

The gold standard for solving ill-conditioned systems of 
linear equations is Tikhonov regularisation (TR) [20], which 
belongs to L2-regularisation methods; however, this method 
does not allow obtaining a nonnegative solution. 
L1-regularisation methods, such as LASSO [34], adaptive 
group orthogonal matching pursuit [35], kernel method [36], 
and sparsity adaptive correntropy matching pursuit method 

[37], have a significant advantage over TR, namely, the result-
ing solution is less ‘blurred’ compared to a fluorescent object, 
which makes it possible to determine its size more accurately. 
However, this approach, like TR, does not consider the non-
negativity condition. 

Thus, in the methods listed above, either regularisation 
procedures, or the nonnegativity condition are not used or 
used incorrectly. 

It should also be noted that a new approach to DFT based 
on machine learning methods, in particular on neural net-
works, showed a better result compared to the results of exist-
ing reconstruction methods [38]. However, this approach 
requires the unification of the initial data for solving a specific 
DFT problem, in which the positions of sources and detec-
tors, the parameters of the partitioning grid of the original 
object, etc., must be rigidly specified. Otherwise, the task of 
the neural network training becomes very complicated. 

To solve the DFT problem it is proposed here to use the 
TR-based algorithm, previously developed by us, that takes 
into account the nonnegativity of the reconstructed compo-
nents (TRNC) [28]. The nonnegativity conditions in this 
method are introduced inside the iterative procedure, like in 
the SMART method, and so it does not artificially zero out 
the current vector components, as in ART and NNLS. 

This paper describes an iterative procedure for the TRNC 
algorithm and compares the results of reconstructing the spa-
tial distribution of a fluorophore in a model object (biological 
tissue phantom) with the results of ART, SMART, and TR 
algorithms, as well as matrix inversion (MI) and NNLS algo-
rithms. The biological tissue phantom was scanned using an 
experimental DFT setup developed at the Institute of Applied 
Physics of the Russian Academy of Sciences (Nizhny 
Novgorod, Russia) and intended for the study of small labo-
ratory animals. 

2. Materials and methods 

2.1. Statement of the DFT inverse problem 

The spatial distribution of the fluorophore concentration in 
the tissue F (r0), where r0 is a set of points belonging to the 
tissue volume V under study, can be found using the data on 
the intensities of the fluorescence signal Pexp(rs, rd) registered 
for different locations of the radiation source rs and detector 
rd. If the absorption coefficient of the fluorophore distributed 
in the tissue is much less than the absorption coefficient of the 
tissue itself, the problem can be considered linear. The func-
tion F (r0) is sought among the set of values that satisfy the 
condition ( ) , Vr r0 6H !F 0 0 , as a solution to the Fredholm 
integral equation of the first kind [39]

exp ( , ) ( ) ( , , )dFr r r r r r rP s d d

V

F= 0s0 0y ,	 (1)

where F(rs, r0, rd) is the point spread function determined by 
the optical properties of a turbid medium (scattering and 
absorption coefficients), boundary conditions, characteristics 
of the source and detector, as well as the brightness of the 
fluorophore. Since F and Pexp include many multiplicative 
parameters (source power, spectral sensitivity of the detector, 
quantum yield and absorption coefficient of the fluorophore, 
refractive index of the object under study, etc.), which are dif-
ficult to measure, the distribution function of the fluorophore 
is determined up to an arbitrary factor.
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To solve the integral equation (1), the original volume V is 
divided into N disjoint voxels. There are various methods of 
division; in particular, tetragonal computational grids with a 
variable step can be used for an arbitrary surface. However, 
to demonstrate the operation of the proposed TRNC algo-
rithm, we will use a simplified model, namely, a medium in 
the form of a rectangular parallelepiped with equidistant divi-
sion along thex, y, and z axes into Nx, Ny and Nz parts with 
corresponding steps dx, dy and dz. Then Eqn (1) can be rep-
resented in the form of a system of linear equations of dimen-
sion M ´ N, where N = Nx Ny Nz, and M is the number of 
measurements with different positions of the source rsand 
detector rd: 

An = p.	 (2)

Here A is an M ´ N matrix of nonnegative real numbers, 
which characterises the point spread function in Eqn (1); p is 
a vector of real numbers of dimension M characterising the 
results of measurements of the fluorescence intensity; and n is 
the sought vector of dimension N, which describes the distri-
bution of the fluorophore concentration. The vector n is 
sought in the class of nonnegative numbers: 0j Hn , j = 1, . . . , N.

2.2. Iterative procedure of the TRNC algorithm 

The iterative TRNC algorithm is described in [28]. In this 
approach, in contrast to other reconstruction methods, con-
ditional optimisation is changed for unconditional one and 
the vector n reconstructed from Eqn (2) is represented as  

, , ,v u j N u R1j j j
2 !n = = =# - or, in matrix-vector form, 

( )D u un = ,	 (3)

where D(u) is the diagonal matrix of the vector u. Then the 
iterative procedure can be written in the form: 

( )AD u( ) ( ( )u u D u A1 T
k k k k1 w w= + -+

	 p) ( )E D u Aa+
T

k
1- ,	 (4)

where E is the identity matrix; 0 < w < 1 is the relaxation 
parameter; a is the regularisation parameter; and k is the iter-
ation number. The convergence and stability of this algorithm 
are also described in [28]. 

2.3. Experimental setup for DFT 

The model experiment was carried out using the DFT setup 
developed at the Institute of Applied Physics of RAS. A 
schematic of the setup is shown in Fig. 1. It is based on the 
plane geometry of scanning the object under study by a laser 
beam that excites fluorescence in the object. The setup is 
designed for fluorescence studies in laboratory animals; red 
fluorescent proteins are used as a contrast agent. Most red 
fluorescent proteins (DsRed, DsRed2, TurboRFP, etc.) are 
efficiently excited by laser radiation with lex = 532 nm. 
Radiation of an ATS-53-250 laser (CJSC ‘Semiconductor 
Devices’, Russia) at l = 532 nm is delivered to the object of 
study using a multimode fibre and a collimating lens. At the 
research object, the radiation power is 20 mW, the beam 
diameter is 2 mm. The collimator lens is scanned in two 
coordinates using mechanical drives in the XY plane perpen-
dicular to the direction Z of the probe beam propagation. 

The system of scanning by the radiation source is similar to 
that used in the previously developed DFT setup [39]. The 
registration of fluorescence images is carried out at each 
position of the collimator lens in the transillumination con-
figuration using a highly sensitive cooled digital camera 
ORCA II BT 512 (Hamamatsu Co., Japan), an S617/73m 
optical filter (Chroma Technology Co., USA), and an objec-
tive lens. The scanning and registering of fluorescence 
images are automated. The scanning step and the number of 
scanning points along the XY coordinates are set using the 
automation program developed by us. 

2.4. Biotissue phantom 

The biotissue phantom, on which the model experiment was 
carried out, is a quartz cell measuring 36 mm ´ 18 mm ´ 
18 mm along the XYZ axes and containing a solution of intr-
alipid and ink and a capsule with a DsRed2 fluorophore 
(Bach Institute of Biochemistry, RAS). The absorption coef-
ficient µa and the reduced scattering coefficient msc'  for this 
solution at the excitation wavelength lex = 532 nm are 0.2 and 
2.7 cm–1, respectively; at the centre fluorescence wavelength 
lem = 620 nm they are 0.05 and 1.8 cm–1. 

A glass spherical capsule with an inner diameter of 2 mm 
is placed in the cuvette, containing a solution of the fluores-
cent protein DsRed2 in a buffer medium to equalise the scat-
tering and absorption of the environment and the fluorescent 
object. 

As follows from the above values, the transport mean 
free path in a biotissue phantom 1/msc' is 4 – 6 mm, which is 
much less than the thickness of the cuvette (18 mm) and the 
depth of the capsule along the Z axis located near the cuvette 
centre. This means that the propagation of light in the bio-
logical tissue phantom is diffuse, except a small (less than 4 
mm) region near the cuvette wall at the point of the probing 
beam incidence. Thus, to describe the optical field near the 
capsule, the reduced incident intensity component can be 
neglected. 

2.5. Comparison of the efficiencies of TRNC and other 
reconstruction algorithms 

To compare the efficiencies of the proposed TRNC algorithm 
and the standard ART, SMART, NNLS, TR and MI meth-

Z
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Fluorophore
capsule

Biotissue 
phantomCollimator with

mechanical
XY scanning Filter

Lens

Digital 
camera

Fibre-output laser,
l = 532 nm

Figure 1.  Schematic diagram of the DFT setup with plane geometry of 
transillumination scanning developed at the Institute of Applied Physics 
of RAS. 
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ods, iterative procedures that implement these methods were 
written in Matlab. 

The results of measuring the fluorescence intensity 
obtained during the scanning of the biological tissue phantom 
are the data for the vector p in the system of linear equations 
(2). The matrix А is calculated using the RTE in hybrid 
approximation [22] with the scattering and absorption coef-
ficients of the biological tissue phantom given in Section 2.4 
and the coordinates of the sources and detectors specified in 
the scanning algorithm. 

Note that all of the above methods, except MI, are appli-
cable to systems with nonsquare matrices, and for reconstruc-
tion the MI method is applied to the system ATAn = ATp, 
which is a system with a square matrix. 

The iterative procedure of each algorithm stops when the 
average relative difference of adjacent iterations of the solu-
tion vector becomes less than 10–3. A decrease in this thresh-
old leads to a significant increase in the time of the iterative 
procedure. 

The efficiency of the algorithm is estimated by the degree 
of closeness of the reconstructed fluorophore distribution to 
the original one, accurate to a constant factor. Another crite-
rion for the efficiency of the reconstruction algorithm is its 
stability, which is estimated based on the solutions of a sys-
tem of linear equations with a perturbed right-hand side

An = p + Dp,	 (5)

where Dp is a perturbation vector of the right-hand side, 
whose components obey the Rayleigh distribution. The 
results of solving Eqn (5) are compared with the initial distri-
bution of the fluorophore at various relative perturbations 

p< <2 /Dp p  2< <d = , taking values dp = 0.15, 0.25, 0.35, and 
0.75. Operation ... 2< <  means calculating the quadratic norm 
of a vector. 

3. Results and discussion 

3.1. Results of scanning the biological tissue phantom 

Twenty-one fluorescent images of the biological tissue phan-
tom were obtained using the DFT setup at 3 ´ 7 different X 
and Y positions of the radiation source with a step of 6 and 
2 mm, respectively. Two images were removed from the origi-
nal data set because of the low overall signal level. Thus, to 
reconstruct the distribution of the fluorophore, 19 images 
were selected, obtained at different positions of the source 
(Fig. 2g). In the original fluorescence images obtained with a 
digital camera, the uninformative part was cut off, including 
the regions beyond the biological tissue phantom, and the 
informative part of the image was compressed to 46 ´ 22 pix-
els (as a result of averaging over neighbouring pixels). 

As seen from Fig. 2, the size of the fluorescence response 
is several times larger than the initial size of the fluorescent 
capsule (2 mm) due to scattering effects. In addition, it fol-
lows from Fig. 2 that the shape of the fluorescence response 
does not change when the radiation source is moved, but the 
overall level of the fluorescent signal changes, which is also 
associated with the diffuse nature of light propagation in tur-
bid media. 

3.2. Reconstruction of the fluorophore distribution 

The number of columns of the matrix A in Eqn (2) is M = 19 ´ 
46 ´ 22, which corresponds to the number of independent 
measurements at 19 different positions of the radiation source 
and 46 ́  22 positions of the detecting elements. The volume to 
be reconstructed is divided into N = 36 ́  18 ́  18 voxels with a 
step of 1 mm. Thus, the system of linear equations (2) for the 
above model experiment is overdetermined and has the size: 
N = 11664 and M = 19228. 
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Figure 2.  Examples of fluorescence images (a – f) obtained with the DFT device upon different positions of the radiation source, indicated by the ‘+’ 
sign. Image (g) is averaged over 19 original fluorescence images. 
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The maximum (Smax) and minimum (Smin) eigenvalues of 
the obtained matrix A are as follows: Smax(A) » 1.4 and Smin(A) 
< 10–21, which corresponds to the condition number of the sys-
tem Smax(A) /Smin(A) ~ 1021. It is known that for such a value of 
the condition number, the standard methods for solving a sys-
tem of linear equations in which there are no regularisation 
procedures do not allow an adequate solution to the system. 

Figure 3 shows the results of reconstructing the spatial 
distribution of the fluorophore in the XY and XZ planes. 
Dashed circles indicate the true boundaries of fluorescent 
inclusions. Table 1 shows the numerical characteristics of the 
reconstruction results: the blurring of the fluorescent inclu-
sion in two planes relative to the original size and the recon-
struction time. 
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Figure 3.  (Colour online) Results of three-dimensional reconstruction of a spherical fluorescent object in a biological tissue phantom in the XY and 
XZ planes by various methods. The dashed circles indicate the true boundaries of the fluorescent inclusion, the colour-coded map represents the 
distribution of the fluorophore concentration normalised to the maximum.
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As can be seen from Fig. 3 and Table 1, the MI method 
does not allow correct reconstruction of the fluorophore dis-
tribution due to the lack of regularisation procedures. The 
ART and TR methods, using regularisation, reconstruct the 
distribution of the fluorophore correctly, but significantly, by 
a factor of 2 – 4, blur its original distribution, which is appar-
ently due to the peculiarities of taking into account the non-
negativity conditions, namely, artificial zeroing of negative 
components of the solution vector at each iteration. The 
SMART method made it possible to obtain a distribution 
close to the initial one; however, due to the slow convergence 
of the iterative procedure, an increase in the number of itera-
tions does not provide an improvement in the quality of 
reconstruction. 

Using the NNLS method, only the position of the object 
centre was accurately reconstructed, but not its size, which is 
associated with incorrect consideration of the nonnegativity 
conditions, namely, the artificial zeroing of the negative com-
ponents of the solution vector and the removal of the corre-
sponding column of the system matrix at each iteration. 

The developed TRNC method demonstrated the best 
result of reconstruction in determining both the localisation 
of the fluorescent inclusion and its size. This method is itera-

tive, but each iteration is based on the results obtained by the 
direct MI method. Thus, the high accuracy of TRNC is pro-
vided by Tikhonov regularisation, and the nonnegativity con-
dition is provided by an iterative procedure, which reduces 
errors in reconstruction compared to other methods. 

Note that the reconstructed distribution of the fluoro-
phore concentration, like the original distribution, has a 
spherical shape. If the object is not spherical, its true shape 
will be reconstructed in the presence of a sufficiently large 
number of projections. The results of the corresponding 
numerical experiments with the initial distribution of the 
‘shelf’ type are described in Ref. [28]. 

3.3. Investigation of the stability of reconstruction algorithms 

Figures 4 and 5 show the results of the reconstruction of a 
biological tissue phantom using various algorithms with a 
perturbed right-hand side of Eqn (5). 

As can be seen from Fig. 4, using the TRNC algorithm, 
the shape of the fluorescent inclusion is reconstructed cor-
rectly even at large relative perturbations; however, the centre 
of the object is significantly displaced even at perturbations 
dp > 0.25. This phenomenon can be explained by the fact that 
the position of the object in depth is reconstructed, first of all, 
due to the projections obtained when the probing source is 
located far from the fluorescent object. However, the magni-
tude of the fluorescent signal in such projections is small, 
which means that the added noise will affect it much more 
than the signal obtained when the radiation source is located 
near the fluorescent object. 

As can be seen from Fig. 5, of all reconstruction methods, 
only the NNLS algorithm made it possible to reconstruct cor-
rectly the original distribution of the fluorophore at dp = 0.15. 
This is because in NNLS, at each iteration, as in the TRNС 
algorithm, a system is formed and its exact solution is deter-
mined. The iterative methods ART and SMART did not 
allow obtaining correct solutions in the presence of even small 
perturbations in the right-hand side of Eqn (5), which is due 

Table  1.  The sizes of the reconstructed fluorophore distribution in 
comparison with the original distribution, as well as the reconstruction 
time for each algorithm.

Reconstruction 
method

Dimension in 
XY plane/mm

Dimension in 
XZ plane/mm

Reconstruction 
time/s

ТR 4.0 9.0 300

MI – – 250

ART 4.0 6.7 2500

SMART 2.0 3.5 240

NNLS 1.0 1.0 500

TRNC 2.0 2.0 320

Note. The original distribution in the XY and XZ planes is 2.0 mm.
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Figure 4.  (Colour online) Results of three-dimensional reconstruction of a spherical fluorescent object in a biological tissue phantom in the XZ 
plane by the TRNC method under various relative perturbations dp. The dashed circles indicate the true boundaries of the fluorescent inclusion, the 
distribution of the fluorophore concentration normalised to the maximum is represented by the colour-coded map.
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to the low convergence rate of these methods. As noted in 
Section 2.5, the iterative procedure of the algorithms stops 
when the average relative difference of adjacent iterations of 
the solution vector becomes less than 10–3. Decreasing this 
threshold in the ART and SMART algorithms led to an 
unreasonably large increase in the reconstruction time, and it 
was not possible to achieve a more accurate solution in a rea-
sonable time using these methods. The TR method also did 
not allow correct reconstruction of the original distribution of 
the fluorophore at small perturbations, because the nonnega-
tivity condition is not taken into account in this approach. 

Note that this paper presents the results of the reconstruc-
tion of a rather simple model object, which is a spherical 
inclusion in a uniformly scattering and absorbing turbid 
medium in the form of a rectangular parallelepiped. Real bio-
logical tissues are significantly heterogeneous, and their sur-
faces have a much more complex shape. Nevertheless, errors 
in variations in the optical parameters of biological tissues 
can be interpreted as variations on the right-hand side of 
Eqn (5), and since the TRNC method showed the best resis-
tance to perturbing the right-hand side of the equation, in 
experiments with real biological tissues the proposed algo-
rithm will probably also behave more stable. However, this 
statement requires verification using the results of scanning 
real biological tissues 

4. Conclusions

Thus, in the present work, we propose a reconstruction algo-
rithm for the DFT based on the TR with the condition of 
nonnegativity of the solution vector components. A model 
experiment has demonstrated a more accurate reconstruction 
of the distribution of fluorescent inclusion and a higher stabil-
ity of this algorithm with respect to perturbations in the right-
hand side of the equation in comparison with the standard 
ART, SMART, and NNLS methods used in DFT, as well as 
in comparison with the traditional TR approach to solving 
ill-posed problems. 
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