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Abstract.  We analyse stationary current of the bosonic particles in 
a flux rhombic lattice connecting two particle reservoirs. For van-
ishing interparticle interactions the current is shown to monotoni-
cally decrease as the flux is increased and become strictly zero for 
the Peierls phase equal to p. Nonzero interactions modify this 
dependence and for moderate interaction strength the current is 
found to be independent of the flux value.

Keywords: quantum transport, rhombic lattice, pseudoclassical 
approach.

1. Introduction

Quantum transport through periodic structures has been of 
permanent interest since the early days of quantum mechanics 
[1]. Recently this problem has been addressed for cold atoms 
in optical lattices where one of the research directions is the 
transport of Bose or Fermi atoms between two reservoirs 
which are connected by a lattice [2 – 9]. Remarkably, under 
certain conditions this problem can be solved analytically, 
which will become a reference point for studying different 
realistic systems. Roughly, these conditions are the following: 
(i) the reservoirs are Markovian so that one can justify a mas-
ter equation for the reduced density matrix for the fermionic/
bosonic carriers in the lattice; (ii) interparticle interactions are 
negligible so that we can use the formalism of the single-par-
ticle density matrix; and (iii) the lattice has a simple structure 
and can be approximated by the linear tight-binding chain. 
Violation of any of these conditions makes the system much 
harder for analysis but, simultaneously, introduces new 
effects. In particular, it has been recently shown [9] that inter-
particle interactions change the ballistic transport regime, 
where the current is independent of the lattice length, into the 
diffusive transport regime, where the current is inversely pro-
portional to the lattice length.

In the present work we extend the studies of Ref. [9] by 
considering the transport of Bose particles through the rhom-
bic lattice. The Bloch spectrum of this lattice is known to con-
sist of two dispersive bands and one flat band which is formed 

by the localised states. Moreover, by applying an external 
gauge field one can modify the dispersion relation of the dis-
persive bands, making them flat as well [10 – 12]. These relate 
the problem considered in the paper to the other fundamental 
problems like the role of flat bands in the quantum transport 
[13 – 15] and the stability of the localised states in the presence 
of interparticle interactions [10, 16, 17].

The cold-atom realisation of a quasi one-dimensional 
optical lattice, which is close to a flux rhombic lattice, was 
reported in Ref. [18], where squares (the so-called two-leg lad-
der) were used instead of rhombs. Varying the flux of the syn-
thetic magnetic field through the square, Atala et al. [18] con-
vincingly demonstrated the change in the Bloch dispersion 
relation but the case of flat bands, unfortunately, cannot be 
reached with the square geometry. We also mention that the 
flux rhombic lattice can be viewed as a chain of identical 
Mach – Zehnder interferometers with different arm lengths. 
This analogy might suggest a very different physical realisa-
tion of the model. However, to be certain, we shall keep in 
mind the cold-atom realisation where the Bose atoms are 
loaded into the optical lattice of the considered specific 
geometry.

2. System

The elementary cell of the rhombic lattice consists of three 
sites which we denote by letters Cm, Am, and Bm, where the 
subscript m denotes the cell number (Fig. 1). We assume the 
presence of the magnetic flux through each cell characterised 
by the Peierls phase F. Then the Bloch bands are given by the 
equation

( ) 00e k = ,  ( ) 1 ( /2) ( /2)cos cosJ!e k kF F= + -! , 	 (1)

where k is the quasi-momentum, and e0(k) is the flat band 
energy. Of a particular interest is the case F = p, where the 
dispersive bands e±(k) become flat, that is e±(k) = ±J.

The system Hamiltonian is of the Bose – Hubbard type, 
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where |Jl m | = J is the atomic hopping rate between the lat-
tice sites, the parameter U characterises the strength of the 
collision-like interatomic interactions, and nlt  is the opera-
tor of the number of particles. We chose to work with the 
gauge where the matrix element JC A = Jexp(iF/2), the 
matrix element JC B = Jexp(–iF/2), and the remaining two 
matrix elements equal J. For the numerical purpose we 
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reorder the lattice sites as C1, A1, B1, C2, A2, B2, . . . (thus, 
for example, the subscript l = 5 corresponds to the A site in 
the second cell).

We are interested in the transport of Bose particles across 
the rhombic lattices where particles come from the left reser-
voir into the site C1 and go out of the lattice into the right 
reservoir from the site CM + 1. The presence of particle reser-
voirs converts the Hamiltonian system (2) into the open 
many-body system whose dynamics is described by the 
reduced density matrix R(t) of the carriers in the lattice. In the 
simplest case, which implies the validity of the Born – Markov 
approximation [19], the master equation for the reduced den-
sity matrix R has the form [6 – 9] 

[ , ] ( ) ( )
d
d i
t
R H R L R L Rsource drain= - + + , 	 (3)

where the operator
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L
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and the operator 
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take into account the processes of particle exchange between 
the system (the lattice) and reservoirs. The parameters gL and 
gR and the parameters  nLr  and nRr  in Eqns (4) and (5) are the 
exchange rates and particle density of the left and right reser-
voirs, respectively. Note that the usage of the terms ‘source’ 
and ‘drain’ in Eqns (3) – (5) implies that nLr  > .nRr

In the subsequent sections we solve Eqn (3) and calculate 
the single-particle density matrix (SPDM) of the carriers,

( ) [ ( )]Trt a a R tlm l mr = @t t ,   1 £ l, m £ L, 	 (6)

which suffices to predict the particle current between the res-
ervoirs. The size of this matrix is obviously given by L = 
3M + 1, where M is the number of rhombs.

3. Noninteracting particles (U = 0)

In the case of vanishing interparticle interactions one can 
obtain a closed set of ordinary differential equations for the 
SPDM elements, 
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Note that this equation is valid for any lattice as soon as 
the particles are injected in the first site of the lattice and with-
drawn from the last site. In what follows, to simplify equa-
tions, we assume that the relaxation constants g1 º gL and 
gL º gR are the same and equal to g.

Let us first discuss the case F = 0 where Eqn (7) can be 
solved analytically. The stationary SPDM of the bosonic car-
riers in the rhombic lattice is exemplified in the lower-left cor-
ner in Fig. 2 for M = 7. Here the stationary populations of the 
C sites are the same (except the first and last sites) and are 
given by the equation,
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Figure 1.  Flux rhombic lattice consisting of M rhombs. The flux is characterised by the Peierls phase F which determines the values of the hopping 
matrix elements.
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Figure 2.  (Colour online) Normalised stationary current as a function 
of F for M = 2 – 7. The following parameters are used: gL = gR = 0.4J 
and n̄R /n̄L = 0.5. The dashed line corresponds to Eqn (12). The inserts 
show the elements of the stationary SPDM by the absolute values for 
M = 7 and F = 0 (lower-left corner) and p (upper-right corner).
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and populations of the A and B sites are one half of this value. 
Furthermore, the off-diagonal elements rl m (here l and m are 
the nearest two lattice sites) are the same. These elements 
determine the mean current of the Bose atoms across the lat-
tice, which obeys the equation

/
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L R
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+
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r r r

, 	 (9)

where /j Jd '=0  and d is the lattice period. Comparing this 
equation with Eqn (34) in Ref. [9] we conclude that for F = 0 
the rhombic lattice behaves similar to the simple linear lattice 
with the even sites given by the ‘sum’ of the A and B sites of 
the rhombic lattice. We also mention that the difference 
n nL R-r r  can be rewritten as (1 / )n n nL R L-r r r . Then, by normalis-
ing the stationary current jr  by j nL0 r , it becomes the function 
of only two parameters, that is, the ratio /n nR Lr r  and the ratio 
g/J.

Next we analyse the case F = p (see the upper-right corner 
in Fig. 2). As expected, here the propagation of particles 
across the lattice is blocked by the destructive interference 
and the current is strictly zero. For populations of the edge 
sites we have

nLllr = r ,   nRLLr = r , 	 (10)

and populations of the neighbouring A and B sites are one 
half of these values. Note also that the A – B dimers at the lat-
tice edges are in the antisymmetric (left edge) and the sym-
metric (right edge) states, that is,

AB AA BB"r r r= . 	 (11)

Unfortunately, there is no simple analytical expression for 
the stationary current for an arbitrary F. Moreover, the result 
depends on the lattice length. The main panel in Fig. 2 shows 
the stationary current in the system as the function of F for 2 
£ M £ 7 (the current is normalised to the particle density in 
the left reservoir). It is seen that the curves rapidly converge to 
some limiting curve which can be approximated by the rela-
tion

( )j Fr  » ( ) ( / )cosj 0 22F F=r . 	 (12)

One may naively assume that dependence (12) is given by the 
mean squared group velocity of a quantum particle in the lat-
tice [8]; however, this appears to be not the case. A proof of 
Eqn (12) remains an open problem.

4. Interacting particles

To treat the case of interacting particles we use the pseudo-
classical approach (also known as the truncated Wigner func-
tion or truncated Husimi function approximations), which 
was proved to be very accurate when analysing the current in 
the simple linear lattice [9]. This approach reduces the master 
equation (3) to the Fokker – Planck equation on the classical 
distribution function  f = f  (a, a*; t) defined in the multi-
dimensional phase space a = a1, . . . , aL :
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where H is the classical counterpart of the Bose – Hubbard 
Hamiltonian (2), {. . .  , . . .} denotes the Poisson brackets, and 
the terms in the square brackets are the Weyl images of the 
Lindblad operators Lsource (R) and Ldrain (R). To clarify the 
mathematical structure of the equation, we explicitly decom-
pose these images into the friction terms,
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and the diffusion terms
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where the diffusion coefficients D1 º DL and DL º DR are 
proportional to the reservoir particle densities nLr  and nRr , 
respectively.

Knowing the distribution function f = f  (a, a*; t), the 
SPDM elements are calculated by taking the multi-dimen-
sional integral

( ) ( , ; )d dt a a f ta a a alm l mr = * * *y . 	 (16)

Note that the method is exact for U = 0 and in the formal limit  
U ® 0, nLr ® ¥, g UnL= =r  const. The main advantage of the 
approach is that, when we cannot solve Fokker – Planck 
equation (13) analytically, it is always possible to estimate 
rl m(t) by mapping this equation into the Langeven equation 
and then employing the Monte-Carlo simulation.

Figure 3 compares the stationary current in the flux rhom-
bic lattice as g = 0, 0.7, and 2. It is seen that for F close to 
zero, interactions suppress the current. This is consistent with 
the results of Ref. [9] and, in fact, is an indication of the tran-
sition from the ballistic transport regime to the diffusive 
regime. For F close to p, however, the current is enhanced 
and has a finite value even for F = p where transport is for-
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Figure 3.  Stationary current as a function of F for M = 5 and g = (solid 
line) 0, (dashed line) 0.7, and (dash-dotted line) 2. The other parameters 
are the same as in Fig. 2. The error bar indicates statistical error due to 
the Monte-Carlo simulation. 
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bidden due to the localisation effect if g = 0 . Thus, interac-
tions destroy the localisation. This is consistent with results of 
Ref. [10], which analyses the energy spectrum of two interact-
ing fermions in the flux rhombic lattice, and results of Ref. 17], 
which specifically addresses the stability of the localised states 
against interactions. In particular, it was shown in the latter 
work that the antisymmetric (or symmetric, depending on the 
chosen gauge) localised A – B state is subject to dynamical 
instability which leads to excitation of the unprotected sym-
metric (antisymmetric) A – B state. Because the developing of 
instability takes some time, in the rhombic lattice we have 
very long transient regime for F = p. During this transient 
process we observe subsequent populations of the C sites with 
the time delay given by the instability time (Fig. 4). When all 
C sites are populated, the system reaches the steady-state 
regime with the diffusive-like transport from the left to the 
right reservoirs.

The used pseudo-classical approach also provides an 
alternative viewpoint on the role of interparticle interactions 
for the quantum transport. While in the quantum picture the 
account for interactions leads to degradation of coherent 
properties of the SPDM, in the classical picture, where inter-
acting bosons in each lattice site are viewed as classical non-
linear oscillators, the loss of coherence is related to the 
dephasing (de-synchronisation) between different oscillators 
due to the fact that the frequency of a nonlinear oscillator 
depends on its amplitude.

5. Conclusions

We studied the current of noninteracting and interacting 
bosonic carriers across the flux rhombic lattice. In the case of 
vanishing interparticle interactions the transport is ballistic 
and the current is determined by the interference effects due 
to the presence of two alternative passes between the C sites. 
For the zero flux the interference is constructive and the cur-
rent is maximal. On the contrary, for the flux corresponding 
to the Peierls phase F = p, the interference is completely 
destructive and the current is zero. For the intermediate value 

of F, the current was found to be approximately proportional 
to cos2 (F/2).

Unlike the case of vanishing interactions, for a moderate 
interaction strength g » J the current is mainly determined by 
the interaction effects, which change the ballistic transport 
regime into diffusive transport. It can be expected from gen-
eral arguments that diffusion destroys interference. This 
expectation was fully confirmed by the straightforward 
numerical analysis of the system dynamics where the station-
ary current of the bosonic carries was found to be essentially 
independent of the flux.
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Figure 4.  (Colour online) Population of the lattice sites (diagonal ele-
ments of the SPDM) as a function of time for F = p and M = 3. The 
other parameters are gL = gR = 0.4J, n̄R = 0, and g = 4. Averaging is 
performed over 400 realisations. Different curves refer to r(1)

C C , r
(1)
A A and 

r(1)
B B , r(2)

C C , r
(2)
A A,  r(2)

B B, etc., from top to bottom. The time t is normalised 
to the tunnelling time h/J.


