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Abstract.  We present the derivation of simple analytical expres-
sions for calculating the widths of Rydberg states with small orbital 
angular momenta in Zn+, Cd+, Hg+ ions of group IIb of the peri-
odic system of elements induced by blackbody radiation (BBR) at 
ambient temperatures from 100 to 3000 K. The probabilities of 
radiative transitions from excited nS, nP, nD and nF states to all 
dipole-accessible states of ions are calculated. The wave functions 
of the quantum defect (QD) method for the initial and final states 
of the Rydberg electron are used to calculate the amplitudes of 
transitions between bound states. The dependences of the probabili-
ties of induced decays and excitations on the BBR temperature, the 
principal and orbital quantum numbers of the Rydberg ion are 
determined. Analytical expressions are derived for numerical esti-
mates of the contributions of the probabilities of thermally induced 
decays and excitations to the width of the Rydberg energy level. 
The numerical values of the coefficients of interpolation polynomi-
als representing asymptotic expansions in powers of the principal 
quantum number n for the relative probabilities of decays and exci-
tations of Rydberg states with large values of n and small orbital 
angular momenta l = 0, 1, 2, 3 are calculated.

Keywords: atom, ion, group IIb, Rydberg states, blackbody radia-
tion, decay probability, excitation, quantum defect method.

1. Introduction 

Ions in highly excited Rydberg states are considered promis-
ing objects of research aimed at designing new frequency 
standards in the optical and microwave ranges [1 – 5], as well 
as highly efficient devices for processing quantum informa-
tion [6 – 8]. Atoms and ions in Rydberg states are highly sensi-
tive to external fields and can be used for precision measure-
ment of the ambient thermal radiation temperature [referred 
to as blackbody radiation (BBR) in the literature] directly in 
the region of localisation of Rydberg particles [9], for measur-
ing weak fields [10], as well as for metrological measurements 
of RF radiation characteristics [11]. Well-developed methods 
of laser excitation of high-energy states make Rydberg states 
with arbitrary values of the principal (n) and orbital (l ) quan-
tum numbers of a valence electron experimentally accessible 
[12 – 14]. 

Ions of group II of the periodic system of elements attract 
the attention of researchers not only due to the availability of 
pure substances, but also due to the simplicity of the one-elec-
tron optical spectrum, which resembles the spectrum of alkali 
metal atoms and allows using the one-electron approximation 
to calculate the characteristics of interaction with external 
electromagnetic fields. The structure of the excitation energy 
spectrum of an external (valence) electron is described with 
good accuracy by the Rydberg formula, which uses the con-
cept of a quantum defect. Based on the Rydberg formula, the 
semiempirical methods of Fues model potential (FMP) and 
quantum defect (QD) have been developed. They are widely 
used in numerical calculations, in which one-electron wave 
functions are represented as modified wave functions of a 
hydrogen-like atom, making it possible to obtain analytical 
expressions for susceptibilities and amplitudes of electromag-
netic transitions in atoms and ions [15]. When calculating the 
characteristics of the interaction of group IIb ions with the 
BBR field in this work, we use the QD method, in which the 
numerical values of quantum defects are determined from the 
most reliable tables of energy levels [16, 17]. For levels with 
large principal quantum numbers, for which no data are 
available in the literature, the determination of quantum 
defects is based on asymptotic expressions with the parame-
ters that can be found in Refs [18, 19]. A comparison of 
numerical results obtained by the QD method (QDM) with 
theoretical and experimental literature data for the excited 
state lifetimes of Zn+, Cd+, and Hg+ ions confirms the appli-
cability of this method for calculating the amplitudes of radi-
ative transitions from Rydberg states. As an example, such a 
comparison is given in Table 1 for Zn+ ions. 

Table 1 shows the lifetimes in an ion completely isolated 
from the environment. Obviously, under real conditions an 
atomic ion can experience the effect of various external fields, 
in particular those that keep particles in a given localisation 
region [1], as well as residual laboratory fields and other sta-
tionary and variable fields. The influence of each specific field 
on the structure of the ion spectrum is an individual problem, 
the solution of which makes it possible to exclude, compen-
sate, or take into account the effect in each specific case [2 – 8]. 

In the present paper, we consider the influence of the 
ubiquitous ambient BBR field on the shift and broadening of 
the Rydberg energy levels of a singly ionised atom from group 
IIb of the periodic table of elements. The numerical values of 
the probabilities of thermally induced transitions from the 
Rydberg states of the S, P, D, and F series of ions to the states 
of the discrete spectrum with both emission (decay) and 
absorption (excitation) of BBR photons are calculated. The 
obtained data were used to calculate the coefficients of cubic 
approximation polynomials describing the asymptotic depen-
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dences of the probabilities of thermally induced broadening 
of Rydberg energy levels. These calculations are motivated by 
the fact that the asymptotic formulae obtained in the early 
1980s [22 – 24] provide good agreement with the results of 
exact numerical calculations only for very large values of the 
principal and orbital quantum numbers (n > 30, n – l <<  n) 
[24]. In addition, the difference in the functional dependences 
on the charge Z of the residual ion for spontaneous and ther-
mally induced broadening [25] can significantly increase the 
contribution of the BBR effects in ions compared to neutral 
atoms. Analytical expressions for the corrections to the 
asymptotic broadening formula were obtained in [25, 26] for 
Rydberg states with large values of the orbital angular 
momentum. For states with small l, the present work uses the 
possibility of obtaining approximation formulae based on the 
results of exact calculations. 

In Section 2, we present an asymptotic expression for the 
Stark energy of interaction of a Rydberg ion with a BBR field 
[22 – 26], which explicitly contains the quadratic dependence 
of the real part (shift) and the linear dependence of the imagi-
nary part (broadening) on temperature. Moreover, the imagi-
nary part of the energy is proportional to the square of the 
ratio of the charge Z of the residual ion (here Z = 2) to the 
principal quantum number n of the Rydberg state. The pos-
sibilities and applicability limits of quantitatively estimated 
corrections to these expressions, obtained in an analytical 
form in Refs [25, 26] for states with large orbital angular 
momenta, are discussed, as well as the possibilities of esti-
mates by interpolating the results of numerical calculations 
performed in this work. 

Section 3 discusses the procedure for calculating the 
amplitudes of spontaneous dipole transitions with emission 
of photons, which are used to calculate the probabilities of 
spontaneous transitions of ions from highly excited states 
with large values of the principal quantum numbers to states 
with lower energies. The total probabilities of spontaneous 
transitions sp

nlG  are converted into numerical values of spon-
taneous lifetimes  1/sp sp

nl nlt G= . The results obtained are used 

to determine the coefficients of a cubic polynomial approxi-
mating sp

nlt  with the asymptotic dependence on the principal 
quantum number taken into account: sp

nlt  µ n3 [18]. The 
approximation parameters are shown in Table 2 below. 

In Sections 4 and 5, we calculated the probabilities of 
stimulated emissions and excitations of a Rydberg atom, 
accompanied by radiative transitions to lower and higher 
bound states with emission and absorption of photons, 
respectively, under the action of BBR. Approximation for-
mulae for the total probabilities of emissions and absorptions 
of the same form are chosen. The coefficients of the approxi-
mating polynomials are determined from the numerical val-
ues of the probabilities calculated within the QD approxima-
tion for Rydberg states with principal quantum numbers n in 
the range 15 – 400 of each of the selected series with orbital 
angular momenta l = 0, 1, 2, 3. 

Numerical estimates show that in the considered BBR 
temperature range from 100 to 3000 K, the relative contri-
bution of ionisation transitions to the states of the continu-
ous spectrum to the width of the Rydberg energy level does 
not exceed 1 % – 2 % and rapidly decreases with increasing n. 
Thus, the main cause of thermally induced broadening of 
high levels is transitions to states of the discrete spectrum. 
The approximating expressions obtained in Sections 3 – 5 
provide detailed information on the ratio of the probabili-
ties of thermally induced emissions and excitations as a 
function of the BBR temperature and on the principal quan-
tum numbers of Rydberg levels with small orbital angular 
momenta ( l £ 3). 

2. Thermally induced shift  
and width of the Rydberg energy level 

The analytical expressions presented in Refs [25, 26] for cor-
rections to the asymptotic formulae for energy level broaden-
ing and shifts of Rydberg states of atoms [22 – 24] turned out 
to be inapplicable to states with small orbital momenta (l < 
10 ). When deriving formulae for these corrections, we used 
the expansion of the Planck formula for the number density 
distribution of thermal photons in powers of the parameter 
z = w/kBT. Hereinafter, the atomic system of units e = m = 

1' =  is used, in which the speed of light numerically coin-
cides with the inverse fine structure constant, c = a–1 =  
137.036; the temperature is expressed in kelvins; the 
Boltzmann constant is determined by the ratio of the atomic 
energy unit to the atomic temperature unit, kB = 1/Ta; and 
Ta = 315776 K. The coefficients of expansion in powers of 
w/kBT turn out to be proportional to the sums of the oscil-
lator strength moments of electric dipole transitions 
f , ( )
( )
n l m nlm
q

=ml l l  |2 | |n l m r nlmn n
q1 2G Hw m
+ |l l ll  from the initial state 

|nlmñ into all dipole-accessible states |n'l'm' ñ of the Rydberg 
electron [25, 26]:
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The sums of the moments S ( )nl
q  with q = 0, 1 determine 

asymptotic expressions of the real [e0(T  )] and imaginary 
[G0(T  )] parts for the Stark interaction energy of the atom with 
the BBR field [22 – 26] 
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Table  1.  The lifetimes (in nanoseconds) of the excited nS, nP3/2, nD5/2 
and nF7/2 states of the Zn+ ion, calculated in the QD approximation, in 
comparison with the data of the FMP method [19], the information 
system [17] and with the range of values of the most reliable theoretical 
and experimental data given in [20, 21].

State QDM FMP [17] Theory Experiment

5S 2.594 3.24 1.7 1.4 – 2.5 1.7 – 3.9

6S 4.845 5.66 3.6 3.58 – 4.7 –

7S 8.858 9.89 7.3 – –

8S 14.63 16.0 – – –

4P3/2 2.049 2.04 2.6 1.91 – 3.1 1.81 – 3.5

5P3/2 14.89 16.9 16.7 15.9 – 18.6 15.0 – 19.0

6P3/2 59.9 55.0 46.9 46.9 – 67.9 –

7P3/2 209.9 64.6 – – –

8P3/2 155.2 266.9 – – –

4D5/2 1.32 1.43 1.5 1.21 – 1.39 1.3 – 4.55

5D5/2 3.25 3.45 3.7 3.25 – 3.75 4.9 – 5.9

6D5/2 6.44 6.73 8.9 6.6 – 7.56 8.0 – 9.8

7D5/2 11.2 11.8 17.0 11.48 15.2 – 18.8

8D5/2 17.7 18.6 –

4F7/2 4.79 4.97 4.3 4.2 – 4.8 4.35 – 7.2

5F7/2 9.86 9.91 9.4 8.53 – 9.5 –

6F7/2 17.2 17.0 17.3 17.11 – 18.8 –

7F7/2 27.9 27.2 – – –
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Analytical expressions for the corrections to Eqn (2) 
depending on the quantum numbers n, l and on the tempera-
ture T are also determined by the sums of moments (1) with 
positive exponents q. In this case, S ( )nl

q  with even values of q 
determine the corrections to the real part

( ) ( ) ( ) ( ) ( )Re T T T T TEBBRnl nl 0 1 2 fe e e e= = + + +6 @ ,	 (3) 

where e0(T ) = p(kBT )2/(3c3) is the asymptotic value of the 
shift, represented explicitly in expression (2). A similar expan-
sion for the broadening can be written as

( ) ( ) ( ) ( ) ( )Im T T T T TEBBR tot
nl nl 0 1 2 fG G G G= = + + +6 @ ,	 (4) 

where the asymptotic value ( )Ttot
nlG   » ( ) 2T k TB0G #=   

/S c( )
nl
1 3  is also presented explicitly in Eqn (2). The subsequent 

terms are proportional to the ratios of sums (1) with odd 
exponents to odd degrees of temperature: ( )TqG  µ S ( )

nl
q2 1

#
+  

( )k T ( )
B

q1 2- ,  where q = 1, 2, 3, . . . [25, 26]. Taking into account 
the explicit dependence of sums (1) on the quantum numbers 
of the Rydberg state, the ratio of the subsequent terms of 
sums (3) and (4) at large values of the principal quantum 
number (n >>  n0, where n0 corresponds to the lowest energy 
level of the series with a given orbital angular momentum l > 
q > 1) can be represented as

q

q 1

e
e +

 µ 
q

q 1

G

G +
 µ 

l k T
Z

B
3

2 2

e o ,	 (5)

each term Gq(T ) in (4) decreasing proportionally to 1/n3 with 
increasing n. Thus, expansions (3) and (4) formally represent 
the first terms of asymptotic expansions in powers of the 
parameter Z 4/(l 3kBT )2 of the real and imaginary parts of the 
energy of the Stark interaction of a Rydberg atom with the 
BBR field. For states with small orbital angular momenta 
(l  < p, p = 2, 3, . . . , 10), the sums S ( )

nl
p2  and S ( )

nl
p2 1+  become 

infinite. For states with l > p, ratios (5) become small only at 
temperatures sufficiently high to make the sequence of terms 
in expansions (3) and (4) decrease. Therefore, the use of two 
or three terms in these expansions to estimate the corrections 
to the asymptotic expressions e0 and G0 at room or close to 
room temperatures is possible only for states with large 
orbital angular momenta, l > 10 [26]. 

To calculate the numerical values of the corrections ei, Gi 
(i = 1, 2, 3 …) to the energy of states with small orbital angular 
momenta, a different approach should be used, based on gen-
eral formulae for the energy of the Stark interaction of an 
atom with the BBR field. From the results of calculations 
using these formulae, one can obtain simple approximate 
expressions that make it possible to assess quickly and accu-
rately the probabilities of stimulated emissions and absorp-
tions, which determine the broadening of the energy levels of 
stationary states. Asymptotic expressions for group IIb ions 
are determined by the method of approximating polynomials 
previously used for group IIa ions [27, 28]. 

The general expression for the total probability of induced 
radiative transitions from the state |nlmñ under the influence 
of the BBR can be represented as [19, 29]

|
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Here ( | |) /2l l l l l= + + -2 l l  is the larger of the two values l 
and l' ; the summation applies to all states |n l m Hl l l  from the 
complete set of states of the atom/ion, including integration 
over states of the continuous spectrum with positive energy. 
The last expression in Eqn (6) was obtained after summing 
over m' and m and contains only the radial part of the dipole 
transition amplitude 2 | | | |f n l r nl( )

n l nl n n
2 3 2G Hw= l ll l l . Numerical 

calculations show that the contribution of thermally induced 
transitions to the continuous spectrum states from the 
Rydberg state with an orbital angular momentum l £ 3 and 
a principal quantum number n ranging from 15 to 400 for 
practically interesting temperatures T < 1000 K does not 
exceed 1 % – 2 %. Therefore, in this study, the effect of ther-
mally induced ionisation on the broadening of the energy 
level of the Rydberg state is not taken into account. Then 
probability (6) can be decomposed into two components, 

( ) ( ) ( )T T TBBR dec exc
nl nl nlG G G= + , corresponding to the total 

probability of decays and excitations with emission and 
absorption of the BBR photons, respectively. In this case,

( )Tdec
nlG  is determined by the sum of terms in Eqn (6) cor-

responding to the energy of final states lower than the energy 
of the initial state, E En l nl1l l , and ( )Texc

nlG  is determined by 
the sum over all states of the discrete spectrum with energy 

.E En l nl2l l  

3. Spontaneous width and lifetime 
of the Rydberg state 

The spontaneous width sp
nlG  of the energy level of the state |nl ñ 

is the total probability of dipole radiative transitions to the 
states |n l l 1! H=l l  with energy E En l nl1l l . The expression for 
sp
nlG  coincides with the corresponding expression for ( )Tdec

nlG , 
in which the density of the number of states (population) of 
BBR photons ( ) { [( /( )] 1}expp T k TBBR

B
1w= - -  is replaced 

with the temperature-independent density of the number of 
states of spontaneous photons psp = 1. For a circular Rydberg 
state with the angular momentum l = n – 1, the transition 
from which is possible only to a single lower state with 
n n 1= -l , l l 1= -l  (also circular), one can obtain a closed 
analytical expression for sp

nlG  [25, 30]. This is because the 
wave functions of circular states are hydrogen-like. For 
states with small orbital angular momenta, it is necessary to 
use approximate wave functions. However, due to simple 
analytical expressions for the QD and FMP functions, 
numerical calculations are quite accessible for modern com-
puter facilities, and the data obtained are in satisfactory 
agreement with theoretical and experimental data available 
in the literature for the natural lifetimes /1sp sp

nl nlt G=  of 
excited states. 

Calculations for highly excited states with principal quan-
tum numbers n in the range 15 – 400 for all Rydberg series 
with l = 0, 1, 2, 3 give numerical values of the lifetimes, which 
are in good agreement with the asymptotic dependence 

n( )sp
nl l

0 3t t= , where the numerical factor ( )
l
0t  is independent of 

the principal quantum number constant for series of states 
with the angular momentum l. To improve the accuracy of 
the asymptotic approximation and extend the domain of its 
applicability, a correcting factor can be introduced in the 
form of a cubic polynomial in powers of the inverse princi-
pal quantum number, which tends to unity in the limit n ® 
¥, so that 
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1n n n n
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l l l0 3
1
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3

t t
t t t

= + + +e o.	 (7) 

Coefficients ( )
l
it  (i = 0, 1, 2, 3) are determined by the polyno-

mial approximation method for the calculated sp
nlt  values of a 

particular series of Rydberg states with a fixed orbital angular 
momentum l. Table 2 presents the values of the factor ( )

l
0t  (in 

nanoseconds) and coefficients ( )
l
it  obtained here using the QD 

approximation for the series of Rydberg states S, P3/2, D5/2, 
and F7/2 with the maximum total angular momentum J = l + 
1/2 of group IIb ions.

The numerical values of the parameters ( )
l
it  (i = 0, 1, 2, 3) 

given in Table 2 ensure the accuracy of reproduction of the 
numerical data of the calculations described above with a 
relative error of less than 5 % in the range of values of the 
principal quantum number 15 < n < 500. For nP3/2, nD5/2, 
and nF5/2 states of Zn+, and nD5/2 states of Cd+, as well as 
nP3/2 and nD5/2 states of Hg+, the error does not exceed 1 % in 
the region 12 < n < 1500. The data in Table 2 can be useful 
for further studies of the properties of Rydberg states with 
small orbital angular momenta in Zn+, Cd+, and Hg+ ions. 

4. BBR-induced transitions  
from the Rydberg state 

From Table 2, it can be seen that the natural lifetime of the 
Rydberg state with n = 100 ranges from 34 to 127 ms, depend-
ing on the orbital angular momentum of the ion. For n = 450, 
the lifetime is 3 – 12 ms. However, the ubiquitous ambient 
thermal radiation can significantly reduce the lifetime of an 
atom in a highly excited state and even induce photoionisa-
tion [21 – 23]. Interaction with BBR leads to broadening of 
atomic levels, given by the total probability (6) of induced 
radiative transitions. The terms corresponding to the transi-
tions from the Rydberg state |nlmñ to the states |n'l'm' ñ with 
lower energies, E En l nl1l l , represent the total probability of 
thermally induced decay transitions 
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where each term differs from the probability of the corre-
sponding spontaneous transition by the factor 

( , )
[| | /( )] 1exp

p T
k T
1BBR

B
n n

n n
w

w
=

-
l

l

,	 (9) 

determining the Planck distribution for the number density 
of thermal photons (population) at the frequency 

E Enn nl n lw = -l l l . Thus, function (9) can be considered as the 
relative (with respect to the spontaneous) rate of the stimu-
lated radiative transition. Obviously, this function has the 
maximum value for the minimum exponent in the denomi-
nator. At a fixed temperature, this minimum corresponds to 
the frequency of transition to a state neighbouring in energy, 
at which the exponent is /( )k TBnnw l  » h º Z 2/(n3kBT ). If 
h <<  1, then the population (9) becomes proportional to the 
product n3T: ( , )p TBBR

n nw l  » n3kBT/Z 2. Note that this value 
is Z 2-fold suppressed for ions in comparison with ( , )p TBBR

n nw l  
for neutral atoms. This estimate of the photon number cor-
responds to taking into account only the dominant term in 
the expansion in powers of the exponent of the right-hand 
side of expression (9). Nevertheless, it indicates the possibility 
of obtaining a sufficient approximation formula for probabil-
ity (8). More informative can be an approximation for the 
relative probability ( ) ( ) /R T Tdec dec sp

nl nl nlG G= , which directly 
reflects the relative contribution of thermally induced transi-
tions to the broadening of the energy level in comparison with 
spontaneous broadening. Taking into account the major 
influence of the probabilities of induced transitions to neigh-
bouring energy states on the probability ( )Tdec

nlG , as well as 
the asymptotic behaviour of the lifetime (7), we can write an 
approximate expression that effectively takes into account all 
terms on the right-hand side of (8), in the form of a fraction

( )
( )

( / ) ( )
R T

D T

Z n P xdec
dec

nl
n

nl
2

= ,	 (10) 

whose numerator is a cubic polynomial

( ) ( )P x a T xdec d
nl i

i

i 0

3

=
=

/ .	 (11) 

The argument x = 200/(nT 1/3) µ h1/3 of the polynomial disap-
pears at nT 1/3® ¥, and the coefficients ai

d(T           514) (i = 0, 1, 2, 3) 
depend on temperature. Thus, ( ) ( )P a T0dec d

nl 0=  becomes a 
T-dependent quantity as n ® ¥ (x ® 0). The denominator 
Dn(T ) = exp[Z 2/(n3kBT )] – 1 determines the density of the 
BBR photon number at frequencies w » Z 2/n3 of transi-
tions to the nearest states, which make the main contribu-
tion to sum (8). The factor (Z/n)2 in the numerator of the 
fraction in Eqn (10) takes into account the difference in the 
dependences of the asymptotic probabilities of thermally 
induced [ ( )Tdec

nlG ] and spontaneous ( sp
nlG ) transitions on 

the charge of the ionic core Z and on the principal quan-
tum number at n ® ¥. To determine the coefficients ai

d(T           514), 
one can use the method of polynomial interpolation of the 
function ( )Tdec

nlG , calculated at specific temperatures in a 
certain range of numerical values of the principal quantum 
number. The obtained values of  ai

d(T           514) at particular values 
of temperature T can also be used to determine their depen-
dence on temperature using the interpolation by a cubic 
polynomial of the form 

( ) ( )a T Q y b yd d d
i i ij

j

j

0

3

= =
=

/ ,	 (12) 

where y = (100/T )1/3; i = 0, 1, 2, 3; b d
ij  are constant coefficients 

depending only on the orbital angular momentum l. The 
argument of the polynomial Qi(y) is chosen so that at high 

Table  2.  Parameters of asymptotic approximation (7) for lifetimes tl
(0) 

and coefficients tl
(i ) of the cubic polynomial for excited nS, nP3/2, nD5/2, 

and nF7/2 states of ions of group IIb.

Ion Series tl
(0)/ns tl

(1) tl
(2) tl

(3)

Zn+

nS 0.059834 5.0513 –278.95 2287.3

nP3/2 0.12734 19.759 135.91 15507.1

nD5/2 0.048834 –1.9724 1.5145 –32.55

nF7/2 0.0843346 0.63229 –42.252 400.23

Cd+

nS 0.0661534 1.5551 –292.84 2681.4

nP3/2 0.347681 11.859 –15.322 –666.88

nD5/2 0.047934 –3.3985 –6.1472 32.364

nF7/2 0.111851 40.157 –1138.0 8958.7

Hg+

nS 0.0869103 3.1597 –449.73 4194.1

nP3/2 0.0903141 –1.9110 –58.046 153.10

nD5/2 0.0412015 –7.6834 36.613 –138.76

nF7/2 0.134523 33.325 –933.48 7221.4
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temperatures it becomes a temperature-independent con-
stant, ( ) ( )Q y b ad d

i T i i0 3=
"3

. A similar condition 
( ) ( )P x a bdec d d

nl n T 0 003 3 =
"3

 is used when choosing the 
coefficients of polynomial (11). Double interpolation is due to 
the dependence of the probability ( )Tdec

nlG  on three quantities 
n, T, and l. The dependence of ( )Tdec

nlG  on the orbital angular 
momentum leads to the need to determine separate sets of 
coefficients b d

ij  for each value of l. Thus, to find the numerical 
values of the relative probability ( )R Tdec

nl  for the given values 
of the principal and orbital quantum numbers and the BBR 
temperature, it is sufficient to have a matrix of coefficients b d

ij  
for a specific series of states with a fixed orbital angular 
momentum l. 

5. Excitations from the Rydberg state  
induced by the BBR 

The second part of the sum in expression (6) determines the 
total probability of excitations of the states | n'l' ñ with energies  
E En l nl2l l :

( )
( ) [ /( )]

| |

exp
T

c l k T

l f

3 2 1
2

1

( )

( )

exc

B
nl

n n

n l nl

n l l
E E

3

2

1

n l nl

w
G =

+ -!

2

2

= l

l l

l l

l l

/ .	 (13) 

Similar to ( )Tdec
nlG , the main contribution to this sum comes 

from terms with n' – n <<  n. Despite the infinite number of 
bound states with n' > n, due to the rapid decrease of the 
radial amplitudes of the electric dipole transition án'l ± 
1|r | nl ñ, the contribution of an infinite number of states with 
n’ – n >>  1 turns out to be significantly smaller than the 
contribution of the states | n'l' ñ close in energy to the state 
| nl ñ with n' – n <<    n. Thus, the asymptotic dependences 

( )Texc
nlG  and ( )Tdec

nlG  at large values of n and T are virtually 
the same. Therefore, the approximate expression for the rela-
tive probability of excitation ( ) ( ) /R T Texc exc p

nl nl nl
sG G=  can be 

written similarly to Eqn (10) in the form 

( )
( )

( / ) ( )
R T

D T

Z n P xexc
exc

nl
n

nl
2

= ,	 (14) 

where ( )P xdec
nl  is replaced with the polynomial 

( ) ( )P x a T xexc e
nl i

i

i

0

3

=
=

/

with the same argument as in Eqn (11), x = 200/(nT 1/3), and 
the coefficients ( )a Tei  are determined by the method of poly-
nomial interpolation of the numerical values of the total 
probability (13) of the BBR-induced excitations, calculated at 
a fixed temperature T, similarly to the coefficients ( )a Td

i  (12) 
for the total probability of thermally induced transitions. In 
this case, the coefficients b d

ij  of the polynomial ( )Q yd
i  are 

replaced with the corresponding coefficients b e
ij  of the poly-

nomial ( )Q yei represented by the expansion in powers of the 
parameter y = (100/T )1/3 similar to expansion (12). 

6. Results of numerical calculations  
and their discussion 

The results of numerical calculations using Eqns (8) and (13) 
with the QD method wave functions for the probabilities 
of radiative transitions, both spontaneous and induced by 
BBR with temperatures of 100 – 3000 K, for a series of 
Rydberg S, P, D, and F states with principal quantum num-
bers from n = n0 to n = 400 in Zn+, Cd+, Hg+ ions, were 
interpolated and presented in the form of approximating 
expressions (10) and (14). Coefficients of cubic polynomials 
(11) and (12) were obtained by polynomial interpolation of 
numerical values of probabilities for states with n = 15, 40, 
80, and 120 at temperatures T = 100, 300, 1000, and 2000 K.  
Tables 3 – 5 present numerical values of the coefficients b d

ij  
and b e

ij , which determine the relative probabilities of ther-
mally induced transitions in accordance with Eqns (10) and 
(14).

It should be noted that the coefficients b d00  and b e00  for 
each series of states allow estimating the ratio of the total 
probabilities of induced transitions from sufficiently high 
Rydberg states with the stimulated emission (decays) and 
absorption (excitation) at a sufficiently high temperature of 
the BBR. In particular, for cadmium ions, the probabilities of 

Table  3.  Coefficients of polynomials (12) approximating the total probabilities of BBR-induced decays (10) bd
i j and excitations (14) be

i j of the series 
of Rydberg states with small orbital angular momenta (l  £  3) in Zn+ions.

Series i bd
i 0 bd

i 1 bd
i 2 bd

i 3 be
i 0 be

i 1 be
i 2 be

i 3

S

0 4.3472 –0.02559 0.1021 –0.0060 0.6807 –0.1303 0.2763 –0.1888

1 2.0671 –9.282 9.083 –3.493 1.639 –3.930 3.706 –1.042

2 –20.07 69.54 –84.79 35.33 –0.1474 0.1080 0.6471 –0.8913

3 15.732 –60.10 78.01 –33.58 –0.0288 0.4046 –0.7939 0.6084

P3/2

0 4.2744 0.0083 –0.0100 0.0060 5.4406 –0.2504 0.6237 0.4415

1 –2.9950 4.4292 –5.8494 2.4580 21.579 –56.19 59.78 –21.82

2 18.317 –64.96 80.79 –33.77 21.063 –69.00 87.62 –40.71

3 25.835 –99.52 131.0 –56.88 190.96 –760.56 1002.1 –431.8

D5/2

0 1.6196 –0.00296 0.06123 –0.0210 2.0159 0.2875 –0.5680 0.3251

1 –0.35352 –1.574 1.468 –0.5401 –3.8145 9.000 –8.307 2.655

2 0.90718 –3.191 4.602 –2.060 7.6057 –25.63 28.40 –10.81

3 –0.99104 4.226 –5.891 2.639 –4.5544 17.04 –20.87 8.549

F7/2

0 4.2861 –0.0441 0.1074 –0.0269 2.2144 0.3765 –0.7373 0.4083

1 –6.3532 11.19 –13.15 5.254 –1.0887 1.504 0.5937 –1.021

2 7.3282 –24.58 31.58 –13.40 4.1727 13.41 12.09 –3.667

3 –3.1643 12.64 –17.05 7.480 –2.4772 8.654 –9.331 3.398
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decays from S states are approximately twice, and from F 
states, four times higher than the probabilities of excitations. 
For P states, the picture is the opposite: excitations are almost 
three times more likely than decays. For D states, the proba-
bilities of excitation and decay are practically the same. The 
corresponding broadening of Rydberg levels is determined by 
the total probability of all induced and spontaneous decays 
and excitations and can be written in the form

( ) ( ) ( )T T Tt t sp dec exc
nl nl nl nl
oG G G G= + +

	 [1 ( ) ( )]R T R Tsp d e
nl nl nlG= + + .	 (15) 

Note that for small values of the parameter h [ h = Z 2 ´ 
(n3kBT )–1 <<  1] in the expansion of the Planck distribution 
in powers of the exponent in expression (6) for ( )TBBR

nlG =  
( ) ( )T Tdec exc

nl nlG G+ , a temperature-independent term appears, 
which completely compensates for sp

nlG  [25, 26]. Nevertheless, 

to calculate the approximation polynomials in (10) and (14) 
exact expressions (8) and (13) were used. 

7. Conclusions 

The results obtained in this paper provide important 
information about the relative probabilities of thermally 
induced excitations and decays of the Rydberg states of IIb 
ions in the BBR field. The numerical values of the coefficients 
presented in Tables 3 – 5 make it possible to estimate the rates 
of decays with a transition to lower levels and excitations with 
a transition to states with higher energy from Rydberg states 
with small orbital angular momenta. 

Along with the probabilities of individual processes of 
spontaneous decay and induced decays and excitations, the 
total width of the Rydberg level can be estimated from the 
quantitative data in Tables 2 – 5. If we represent the asymptot-
ics for the thermally induced width (6) in the form 

( ) /T Z T nBBR
nl l

2 2gG = , then from the expression G0(T ) = 4Z2 ́   

Table  4.  The same as in Table 3 for the series of Rydberg states with small orbital angular momenta (l £ 3) in Cd+ions.

Series i bd
i 0 bd

i 1 bd
i 2 bd

i 3 be
i 0 be

i 1 be
i 2 be

i 3

S

0 3.9271 –0.02767 0.05198 0.02910 1.6834 –0.0245 0.0595 –0.0412

1 4.6613 –15.64 16.93 –6.781 1.750 –4.560 4.918 –1.648

2 –25.149 86.21 –105.32 43.94 –9.148 31.86 –39.37 16.143

3 17.175 –65.02 83.88 –35.97 7.1839 –27.95 36.72 –15.84

P3/2

0 6.5008 –1.1653 2.455 –1.657 18.810 5.288 –9.598 4.786

1 4.1867 –8.419 2.432 2.820 45.76 –143.3 190.8 –84.88

2 15.987 –60.20 82.41 –39.78 24.813 –48.39 –7.069 23.06

3 –10.248 42.27 –57.95 27.25 –37.377 107.17 –98.24 29.71

D5/2

0 1.7392 –0.6652 0.1331 –0.07014 1.92994 0.2453 –0.4732 0.2552

1 –0.59293 –0.2874 –0.09792 0.1836 –1.2535 2.369 –1.150 –0.03023

2 –0.013664 –0.3767 1.402 –0.9033 2.3044 –7.101 5.796 –1.531

3 –0.37448 1.930 –3.011 1.485 –1.7177 5.821 –6.168 2.225

F7/2

0 7.34136 –0.1123 0.5234 –0.1636 1.75329 0.4078 –0.7624 0.3136

1 28.9338 –83.765 89.66 35.03 15.8697 –43.27 50.94 –20.67

2 –128.997 445.31 –547.3 228.2 –35.559 124.7 –160.5 68.48

3 102.548 –394.17 514.07 –221.67 23.475 –92.44 124.04 –54.325

Table  5.  The same as in Table 3 for the series of Rydberg states with small orbital angular momenta (l £ 3) in Hg+ ions.

Series i bd
i 0 bd

i 1 bd
i 2 bd

i 3 be
i 0 be

i 1 be
i 2 be

i 3

S

0 3.8357 –0.002076 0.02964 0.04075 3.23202 0.2186 –0.4271 0.2610

1 10.0336 –29.502 32.69 –13.10 5.0746 –14.101 16.81 –7.171

2 –41.8764 144.6 –178.0 74.41 –27.342 95.96 –120.95 51.44

3 29.2278 –112.6 146.8 –63.32 21.0187 –82.52 109.3 –47.67

P3/2

0 2.11065 –0.07759 0.1647 –0.08750 4.59111 1.0002 –1.912 1.023

1 –1.71419 4.057 –5.331 2.341 1.44581 –7.655 14.466 –7.738

2 2.65271 –9.4865 12.67 –5.654 1.8896 –1.6956 –9.480 7.762

3 –1.9035 7.429 –9.952 4.446 –6.113 19.135 –18.808 6.088

D5/2

0 1.4831 –0.05220 0.1071 –0.05723 1.6690 0.2271 –0.4403 0.2443

1 –0.89544 0.71389 –1.068 0.5266 –1.59713 3.339 –2.369 0.4661

2 0.893183 –3.271 4.749 –2.234 2.61188 –8.149 7.429 –2.265

3 –0.78603 3.233 –4.494 2.057 –1.68374 5.6632 –6.077 2.205

F7/2

0 8.55152 –0.1059 0.4409 –0.08208 2.28538 0.6151 –1.116 0.4624

1 29.3827 –85.16 91.00 –35.72 17.9806 –49.84 59.54 –24.35

2 –121.997 418.5 –513.4 214.2 –36.4184 129.6 –169.6 73.02

3 93.7923 –359.5 468.4 –201.9 23.2105 –93.32 127.3 –56.29
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kBT/(3c3n2) for the imaginary part of the Stark energy (2) we 
obtain the factor gl = 4kB/(3c3) = 67833.1 K–1 s–1, independent 
of the orbital angular momentum l. For the series of Rydberg 
S, P, D, and F states of group IIb ions considered in this 
work, the factors l can be expressed through the numerical 
values of the coefficients ( )

nl
0t  and b d00 , b e00  from Tables 2 – 5: 

. ( ) /b b791 7004 ( )d e
l l00 00

0g t= + . These constants essentially 
depend on l. 

For example, for Hg+ ions, the numerical values of the 
factors (in K–1 s–1) are as follows: g0 = 64382.6, g1 = 58748.1, 
g2 = 60568.6, and g3 = 63777.7. This difference in the asymp-
totic values of ( )TBBR

nlG  and their lower values compared to 
G0(T ) for Rydberg states with small orbital angular momenta 
l in neutral atoms were noted in the results of numerical cal-
culations in Refs [24, 29]. The proportionality to the square of 
the residual ion charge Z for ( )TBBR

nlG  was first written explic-
itly in [30]. In this paper, a general expression is obtained in 
terms of the coefficients of the asymptotic polynomials (7), 
(11), (12), and (14) for the correction factor gl, which deter-
mines the dependence of the asymptotics of ( )TBBR

nlG  on the 
orbital angular momentum of the Rydberg state. 

The relative contribution of ionisation processes to the 
broadening of Rydberg energy levels at a fixed temperature 
does not exceed 1 % – 2 % and decreases rapidly with increas-
ing principal quantum number. For this reason, the ionisa-
tion of the Rydberg levels of the BBR was not considered in 
this work. Nevertheless, the numerical values of the ionisa-
tion probability and their dependences on the principal and 
orbital quantum numbers of Rydberg states may be of special 
interest and can be calculated using semiempirical methods of 
the one-electron approximation similar to calculations for 
group IIa ions [27, 28].
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