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Abstract. An elementary algorithm of quantum phase estimation 
based on the modified Kitaev algorithm is implemented on two 
qubits of an IBM quantum processor. This algorithm includes adia-
batic preparation of the initial state, controlled phase shift with 
allowance for the results of previous measurements of qubit states, 
and single measurement of the qubit quantum state in order to 
obtain each significant bit of the measured phase. Classical error 
correction is applied to determine the correct sequence of bits, 
which makes it possible to eliminate the influence of limited accu-
racy of two-qubit gates.

Keywords: quantum processor, quantum phase estimation, modified 
Kitaev algorithm, two-qubit gate.

1. Introduction 

Quantum simulation of elementary physical processes is of 
interest for solving many problems in physics of many-body 
quantum interactions, whose complexity exponentially 
increases with an increase in the number of interacting par-
ticles [1, 2]. Quantum simulation is carried out using a quan-
tum processor capable of performing the quantum Fourier 
transform, on which the quantum phase estimation algo-
rithm is based [3]. Quantum phase estimation is an impor-
tant building block for various quantum algorithms. For 
example, it is used in Shor’s algorithm to expand numbers in 
simple factors, in quantum chemistry to simulate molecules, 
and in Grover’s algorithm [2]. Nevertheless, the implemen-
tation of quantum algorithms on modern quantum proces-
sors is limited by the low accuracy of quantum gates. In this 
context, of great interest is the experimental realisation of 
the simplest quantum algorithms, which makes it possible to 
estimate the potential of quantum processors for solving 
elementary physical problems and the prospects for achiev-
ing quantum dominance. 

In recent years, there has been a significant progress in 
the implementation of quantum calculations based on dif-
ferent physical platforms. Primarily, these are Josephson 
junctions in superconductors [4 – 6], which were chosen as a 
basis for quantum processors by the largest IT companies 
(IBM, Google, Microsoft). At the same time, certain success 
has been achieved on alternative physical systems: ultracold 
ions [7, 8], photons [9], and ultracold neutral atoms [10 – 13]. 
To analyse the prospects of implementing quantum algo-
rithms in these systems, it is of great interest to compare 
their possibilities (by an example of very simple quantum 
algorithms) with those for superconducting quantum pro-
cessors. 

Of particular interest are the problems related to simula-
tion of molecules [14], including the problem of determining 
the structure and properties of individual molecules or molec-
ular aggregates. The latter task can be reduced to determina-
tion of the energy of the molecule in different states, which is 
equivalent to the search for eigenstates and eigenvalues of the 
unitary operator. The phase of the unitary operator is pre-
sented as a bit sequence of arbitrary length. 

Generally, quantum phase estimation is implemented 
using the inverse quantum Fourier transform [3], which 
allows one to find a desired sequence of bits via a single mea-
surement of the quantum register state. The length of the 
measured bit sequence, which determines the measurement 
accuracy, is set by the quantum register length. An alternative 
is the Kitaev algorithm with a single control qubit [15]. In this 
case, one can obtain a bit sequence of arbitrary length as a 
result of successive measurements of qubit states. 

The Kitaev algorithm can be implemented using an itera-
tive scheme, which makes it possible to calculate each signifi-
cant bit after a single measurement of the control qubit state. 
Then, in the next step of sequence, the measurement is pre-
ceded by a qubit phase correction with allowance for the 
results of previous measurements. This scheme was proposed 
in [16]. A numerical simulation of iterative quantum phase 
estimation for an ideal quantum processor and for a system of 
two interacting neutral atoms (excited for a short time into 
Rydberg states when implementing two-qubit gates) was per-
formed in [17]. It is shown that the influence of the decoher-
ence (related to the finite lifetime of Rydberg atoms) on the 
measurement results can be eliminated by multiple measure-
ments of the control qubit states, which can to be considered 
as the classical error correction. 

In this study we implemented an iterative quantum phase 
estimation on an IBM quantum processor and a quantum 
phase estimation based on the quantum Fourier transform by 
an example of determining the energy of the hydrogen mole-
cule ground state. 
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2. Quantum phase estimation algorithms

The general scheme of quantum phase estimation is shown in 
Fig. 1. Here, two quantum registers are used: register S (state), 
in which the wave function of the considered state of the sys-
tem, | y ñ, is recorded, and register R (readout), which is neces-
sary to store intermediate information and obtain the opera-
tor phase. All qubits of the register R used for measurements 
were initially prepared in the | 0 ñ state. Application of 
Hadamard gates H turns the register into a superposition of 
all possible states, denoted as | n ñ. 

Register S is prepared in the eigenstate of some unitary 
operator Ut , denoted as | y ñ. Let j be the phase of the operator  
Ut , i.e., Ut | y ñ = exp(2pij)| y ñ. Applying successively and con-
trollably operators of the form U Uk

2k=t t  to register S, we 
obtain finally the sum of the states of the system: 

7 7| | (2 ) | |expR S i n n
n

p j y= / . (1)

Then we apply an inverse quantum Fourier transform FT+ to 
the register R and measure its state. This procedure will allow 
us to estimate the phase with an arbitrary accuracy. Note that 
the register state is measured once. 

Using this method to measure the phase with a high 
accuracy, one needs a register of sufficiently large length. 
The Kitaev method [15] makes it possible to solve this 
problem using only the control qubit. A schematic of this 
method is shown in Fig. 2. The register consists of one con-
trol qubit and a state register, in which the eigenstate | y ñ 
of the operator Û is recorded. After carrying out a con-
trolled unitary transformation, the system of two qubits 
will be in the state 

0 1[| (2 )| ] |exp i
2
1 p j y+ .

After the Hadamard gate H the system is in the state 

[1 (2 )] | | [1 (2 )] | |exp expi i
2
1 0

2
1 0p pj y j y+ + - . (2)

The probability of finding the controlled qubit in the state 
‘0’ is P = cos2(pj). Having measured it, one can determine the 
phase j. 

Instead of a single measurement of the state of a multiqu-
bit register, multiple measurements of the state of one qubit 
must be performed to measure the phase with a specified 
accuracy. Note that multiple measurements are also necessary 
to measure the probabilities of finding the system in the | 0 ñ or  
| 1 ñ state. The modification of this scheme proposed in [16] 
allows one to determine the kth bit of the phase in one mea-
surement. A schematic of the modified Kitaev algorithm is 
presented in Fig. 3. In contrast to the methods considered 
previously, the measurement begins with the low-order bit of 
the phase. Each iteration includes a single measurement of the 
control qubit state. Before the measurement, its state is cor-
rected to take into account the results of previous measure-
ments via the phase shift RZ (wk), i.e., the qubit rotation 
around the Z axis by an angle wk. 

3. Experimental quantum phase estimation using 
an IBM processor 

Similarly to [17], the model problem for quantum phase esti-
mation was chosen to be the determination of the energy of 
the hydrogen molecule ground state. In accordance with [18], 
we took the minimum basis set of 1s Slater – Zener orbitals, 
STO-3G [19]. At a distance of 1.4 au between the nuclei of 
atoms in the hydrogen molecule, the Hamiltonian matrix has 
the form (in atomic units) [8]:

.
.

0.1813
.

H
1 8310
0 1813 0 2537mol =
-

-
t e o. (3)

The Hamiltonian eigenstate | yl  corresponds to the eigen-
value l. The system Hamiltonian |Hmol

t  generates a unitary 
evolution operator Ut  for the time t: 

| ( ) | (2 ) | |exp expi iU Hmol py t y j y l y= - = =l l l l
t t . (4)

Having measured the eigenvalue phase j, one can find the 
Hamiltonian eigenvalue (molecule energy) Emeas = 2pj/t.

A program was developed for experimental quantum 
phase estimation in the IBM Quantum Experience environ-
ment, which included adiabatic preparation (similar to that 
described in [17]) of the initial state | yl , decomposition of the 
unitary evolution operator in the form of a sequence of single-
qubit rotations, measurement of the qubit final state, and cor-
rection of the control qubit phase in subsequent measure-

H FT+

U

R

S
|yñ

|0ñ

Ù

Figure 1. General scheme of quantum phase estimation based on the 
inverse quantum Fourier transform. 
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Figure 2. Schematic of the Kitaev algorithm with a single control qubit. 
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Figure 3. Adaptive phase estimation scheme. 
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ments. Currently, the IBM company provides access to a 
quantum simulator and to one 1-qubit, seven 5-qubit, and 
one 15-qubit quantum processors [4]. A schematic of the 
5-qubit quantum processor ibmqx2, which was used in our 
study, is shown in Fig. 4. The errors in implementing two-
qubit gates are about 1.5 % [4]. 

Figure 5 shows the experimental probabilities of obtain-
ing the correct value of each bit sequence, consisting of 25 
significant bits and specifying the phase of unitary evolution 
operator. For a quantum simulator, the probability of deter-
mining the correct value of each low-order bit differs from 
unity, because the lower order bits of the true phase value 
(beginning with the 26th bit) cannot be taken into account in 
the calculations. For the quantum processor ibmqx2, 
because of the insufficiently high accuracy of two-qubit 
gates, the average probability of obtaining a correct value 
for 20 higher order bits of the sequence is P = 0.91. Each 
probability value was found by averaging over 1024 mea-
surements. 

This means that a correct sequence of bits cannot be 
obtained in one measurement at the existing processor accu-
racy. At the same time, the choice of the most likely value of 
each bit in repeated measurements makes it possible to find 

the correct value of the phase-specifying bit sequence pre-
sented in Fig. 5. 

When carrying out a quantum phase estimation using a 
quantum inverse Fourier transform, the correct phase value 
could be obtained only using a quantum simulator. The cor-
rect value could not be found using the quantum processor 
ibmqx2 because of the higher sensitivity of this method to the 
accuracy of two-qubit gates. 

4. Iterative algorithm error 

The errors arising when carrying out the iterative Kitaev algo-
rithm were analysed in [16]. In accordance with the notation 
accepted in the monograph by Nielsen and Chuang [2], we 
present the phase j as a sequence of n bits j1, . . . , jn in the 
form 

0.
2 4 2n n

n
1 2

1 2f fj j j j
j j j

= = + + + .

It can be seen in Fig. 5 that, even for an ideal quantum proces-
sor (quantum simulator), the probability of obtaining the cor-
rect value of low-order bits differs from unity. This problem 
would not arise if the desired phase value had the form j = 
0.j1 j2 … jm 0000..., (the number m of significant bits coin-
cides exactly with the length of measured sequence). In this 
case, when simulating on a quantum simulator, the probabil-
ity of determining the correct value is unity for all bits of the 
sequence, because there is no contribution from the ignored 
low-order bits. 

In fact, the measured sequence of bits ju  = 0.j1 j2 … 
jm 0000 differs from the true phase j by a value that can be 
characterised by the parameter d, lying in range 0 – 1: 

m2 , 0 11Gj j d d= + -u . (5)

The conditional probability Pk of correct measurement of the 
state of each significant bit (provided that the previous bits 
were measured correctly) was found in [6]. This probability is 
determined by the d value in correspondence with the expres-
sion [16] 

Pk = cos2(p2k – m – 1 d). (6)

Therefore, to obtain a correct sequence of bits even for an 
ideal quantum processor, one must measure repeatedly the 
state of each bit. In addition, the error in implementing quan-
tum gates leads to additional errors, as can be seen in Fig. 5. 

When carrying out a quantum measurement, the IBM 
processor makes it possible to perform no less than 1024 
repeated measurements to collect statistics. This number of 
measurements is sufficient to correct efficiently errors accord-
ing to the following rule: if the measured probability of 
obtaining ‘1’ exceeds 50 %, the measurement result is taken to 
be ‘1’. 

The probability of finding the correct result for a smaller 
number of repeated measurements was estimated numeri-
cally. The accuracy of single measurement was estimated by 
plotting 104 random 25-bit sequences, for each bit of which 
the probability of obtaining the specified value corresponded 
to the experimental results presented in Fig. 5. The error with 
respect to the true value, ||j j- u , was calculated for each 
sequence. The distribution of the number of sequences over 
the error value in binary notation is shown in Fig. 6a. It can 
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Figure 4. Schematic of a 5-qubit processor ibmqx2. Qubits are shown 
as circles, and the qubit connections for implementing two-qubit gates 
are given by arrows. 
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Figure 5. Measured probabilities of obtaining correct values for each 
bit of the sequence specifying the evolution operator phase (given be-
low). The low-order bits are on the left.
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be seen that the probability of exact coincidence (correspond-
ing to an error less than 2 –25, the left column of the histogram) 
is equal to ~12 %, which is close to the product of the proba-
bilities presented in Fig. 5 for an experimental sequence of 
bits. 

If, instead of one bit sequence, nine sequences with the 
same probability of obtaining the specified value of each bit 
are generated and then the final sequence is chosen based on 
the largest number of coincidences of values of each bit 
among all nine sequences, the probability of finding the cor-
rect phase increases significantly, as can be seen in Fig. 6b. 
The results of estimating the accuracy of measured phase val-
ues for different numbers of repeated measurements are listed 
in Table 1. It can be seen that, even at nine repeated measure-
ments, the probability of obtaining the exact bit sequence 

exceeds 98.8 %, and the probability of obtaining an error less 
than 10–6 exceeds 99 %. 

5. Conclusions

The results of iterative quantum phase estimation based on 
the Kitaev algorithm and using an IBM processor ibmqx2 are 
presented. It is shown that, applying the classical error correc-
tion, one can obtain a correct sequence of 25 significant bits, 
despite the limited accuracy of two-qubit gates. The numeri-
cal estimation of the probability of finding the correct result 
showed that a correct sequence of bits can also be obtained at 
a number of measurements much smaller than the number of 
measurements performed on the IBM processor. 
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2 25
G
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G

- 10 3
G
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