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Abstract. We report a study of thermally induced depolarisation of 
a laser beam in single cubic syngony crystals of 432, m43r , and m3m 
symmetry groups with an anisotropic elastic stiffness tensor. For 
active elements in the form of a long rod and a thin disk with radial 
cooling under uniform volume pumping, we investigate the effect of 
anisotropy of elastic properties on the dependence of the degree of 
depolarisation in the crystal on the orientation of the crystallo-
graphic axes, as well as on the position of the critical orientation in 
the crystallographic coordinate system.

Keywords: high average power lasers, photoelastic effect, thermally 
induced depolarisation, anisotropy of cubic crystals.

1. Introduction

Thermal effects are an important factor limiting the power 
and quality of the output radiation of solid-state lasers [1, 2]. 
Thermally induced depolarisation of radiation in initially 
optically isotropic media – cubic single crystals, glasses, and 
ceramics – has been studied theoretically and experimentally 
since the 1960s. Except for few works, in cubic crystals only 
the anisotropy of the photoelastic effect is, as a rule, taken 
into account, whereas the elastic properties of materials are 
considered to be isotropic (see references in the first part of 
this paper [3]). However, already at the beginning of research 
it was known that this was only an approximation, and a 
solution to the elasticity problem for a parabolic temperature 
profile was found [4].

We study thermally induced beam distortions in single 
cubic syngony crystals of all symmetry groups taking into 
account the anisotropy of their elastic properties, as well as at 
an arbitrary orientation of the crystallographic axes. In [3], 
we obtained expressions for the phase and polarisation dis-
tortions of the beam in active elements in the form of a long 
rod and a thin disk. We found eighenpolarisations, as well as 
the arithmetic mean and the difference between the incursions 
of their phases; considered the specific orientations of crys-
tals; and determined the effective values of the thermo-optical 
constants P and Q. This paper, the second part of the work, is 
devoted to the analysis of thermally induced depolarisation of 
radiation in elastically anisotropic single crystals of symmetry 
groups 432, 34r m, and m3m in comparison with the elastically 

isotropic case and to finding optimal orientations of crystal-
lographic axes under weak and strong birefringence in terms 
of minimisation of the degree of depolarisation. In Section 2, 
we introduce the notations necessary for the statement of the 
problem. In Section 3, thermally induced depolarisation in 
crystals of the simplest orientations is studied. In Section 4 we 
search for the optimal orientation in crystals with a positive 
parameter of photoelastic anisotropy, and in Section 5 we 
investigate the critical orientation in crystals with a negative 
value of this parameter. The results of the influence of the end 
effects on the degree of depolarisation in the rod, announced 
in [3], will be published elsewhere.

2. Statement of the problem and some notations

In the framework of this work, we restrict ourselves to 
media that do not rotate the polarisation plane. We will 
consider an active element in the form of a cylinder, the z 
axis of which coincides with the propagation direction of 
probe radiation. The set of methods for cutting an element 
from the crystal bulk is equivalent to the set of possible 
directions of the z axis in the crystallographic coordinate 
system (a, b, c), traditionally called crystal orientations. 
They are indexed using the first two Euler angles, i.e. azi-
muthal (a) and polar ( b) (see Figs 1a, 1b, and 1d from [3]). 
The third Euler angle (F) is equal, with the opposite sign, 
to the angle of rotation of the active element around its 
axis (see Figs 1c and 1d from [3]).

Crystal orientations are also denoted by Miller indices 
[MNP]. In this paper, major attention is paid to [M0N] and 
[MMN] orientations shown in Fig. 1. Following the generally 
accepted approach, we will not distinguish between equiva-
lent orientations, that is, those obtained from each other by 
cyclic permutation of indices ([NPM], [PMN]) and changing 
the signs of indices ([ ], [ ]MNP MNP , etc.) [5].

Effect of elastic anisotropy on thermally induced distortions of a laser 
beam in single cubic syngony crystals with radial cooling. Part II

A.G. Vyatkin

INVITED PAPER https://doi.org/10.1070/QEL17428

A.G. Vyatkin Institute of Applied Physics, Russian Academy 
of Sciences, ul. Ulyanova 46, 603950 Nizhny Novgorod, Russia; 
e-mail: vyatkin@appl.sci-nnov.ru  

Received 1 October 2020; revision received 30 April 2021 
Kvantovaya Elektronika 51 (7) 565 – 573 (2021) 
Translated by I.A. Ulitkin

a

b

c

a

b

c

–β

–β

[001]

[101]

[100]

[001]

[111]

[110]
a b

Figure 1. (a) Orientations [M0N] (a = 0) in the crystallographic coordi-
nate system and (b) orientations [MMN] (a = p/4).
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Let us consider an active element in the form of a long rod 
or thin disk of radius R, heated uniformly throughout the vol-
ume and cooled through the lateral surface. The temperature 
and elastic stress fields are given in [3] and do not depend on 
z, if we neglect the end effects in the rod.

The lateral cooling of a thin disk is not optimal, but it 
allows the degree of depolarisation to be calculated analyti-
cally. We believe that the regularities we have identified will 
be applicable in the case of end-face heat removal, despite the 
impossibility of a quantitative assessment of thermally 
induced beam distortions.

The local degree of depolarisation G is commonly 
referred to as the fraction of the radiation intensity that has 
passed during propagation through a birefringent optical 
system into the polarisation that is orthogonal to the initial 
one. A similar fraction of power is called the integral degree 
of depolarisation. In the plane wave approximation, it is 
easy to obtain that after a laser beam, initially linearly polar-
ised in the perpendicular plane xy at an angle q to the x axis, 
passes along the axis of one active element, the permittivity 
tensor of which is independent of z, the local degree of depo-
larisation is expressed as

( )sin sin
2

22 2d qG Y= -( ),x y c m , (1)

where Y(x, y) is the angle of inclination of the polarisation 
vector of one of the eigenwaves in the active element; and 
d(x, y) is the difference between the incursions of their phases. 
Averaging (1) over the cross section of the probe beam with 
the field intensity Ein(x, y), we obtain the integral degree of 
depolarisation
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(for simplicity, we assume that there is no absorption and 
amplification of probe radiation in the medium). With strong 
birefringence, g tends to a steady-state value [6]

S

2 2| | | |S SE Ed d
S

1

in ing G=3 3

-
uc my y y y , (3)

where
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2
1 22 qG Y= -3

u .

In [3] we obtained expressions for d and Y in crystals with 
anisotropic elastic properties. Without going into details here, 
we note that they differ in a thin disk and a long rod, as well 
as that d is proportional to the dimensionless heat release 
power

p
QP
lk

= S , (4)

and Y does not depend on it. Here PS is the total power of 
heat release in the active element; l is the wavelength of probe 
radiation in free space; k is the thermal conductivity coeffi-
cient; and Q is the thermo-optical constant, which differs in 
the disk and the rod and, with this reservation, is a material 
parameter {see (66) in [3]}:

Q E[ ]disk 001? ,

Q
Q

1 [ ]

disk

001
rod n=

-
.

 (5)

Here, in accordance with [7]

E[001] = 1/s11,

n[001] = – s12/s11,
 (6)

are Young’s modulus and Poisson’s ratio for the [001] orien-
tation, respectively; and s is the elastic compliance tensor.

Cubic crystals can be divided into two types according to 
the form of their material tensors. In this work, we study crys-
tals of the m3m, 432, and 34r m symmetry groups, which in [3] 
we agreed to call m3m crystals. Their elastic compliance ten-
sor s and piezo-optical tensor p have the same form and are 
determined by three independent nonzero coefficients {see [8] 
and Fig. 2a from [3]}.

The dependence of the thermally induced beam distor-
tions on the orientation of the crystallographic axes in m3m 
crystals in the approximation of the isotropic elasticity prob-
lem is determined by the photoelastic anisotropy parameter x 
[6, 9], for which in [3] we chose the piezo-optical ratio, which 
in the Nye notation has the form

xp = p66/(p11 – p12). (7)

We also showed that in media with anisotropic elastic proper-
ties, this dependence is modulated by the functions that are 
determined by the combination of n[001] with the elastic anisot-
ropy parameter

xs = s66 /[2(s11 – s12)]. (8)

Note that in elastically anisotropic media expression (7) dif-
fers from the elasto-optical ratio {see (59a) in [3]} used in 
[6, 9] and other works by a factor of xs.

For different orientations of the crystallographic axes, let 
us compare the degree of thermally induced depolarisation 
calculated for elastically anisotropic cubic single crystals in 
the form of a long rod and a thin disk with that calculated in 
the isotropic elasticity approximation. Several special cases 
will be considered in which the dependences of the degree of 
depolarisation on the crystal orientation are qualitatively dif-
ferent. We will focus on choosing the optimal orientation. 
Since in the experiment the angle of rotation F, in contrast to 
the other Euler angles, can be easily changed after the manu-
facturing of the active element, we will investigate the degree 
of depolarisation that is minimal with respect to F, and will 
call it optimal. To simplify the calculation we will assume that 
the probe beam has a flat-top transverse profile of the radia-
tion intensity. Such beams are often generated in high-power 
multistage laser systems. Moreover, this assumption does not 
qualitatively affect the results. The beam radius is denoted by r0.

3. Thermal depolarisation in active elements 
made of m3m single crystals of the simplest 
orientations

Figure 2 shows the optimal integral degree of depolarisation 
in single crystals with three simplest orientations ([001], [011], 
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and [111]) as a function of the dimensionless heat release 
power p (4). The calculations were performed for CaF2, SrF2, 
KCl and medium 1, i.e. a model crystal with photoelastic 
properties as in YAG and elastic properties as in CaF2. The 
material parameters of these and other media used in the cal-
culations are given in Table 1.

One can see from Fig. 2 that the dependences for elasti-
cally anisotropic media are qualitatively the same as for elas-
tically isotropic media: quadratic growth at low powers and 
damped oscillations around the steady-state value of g∞ (3) at 
high powers [10]. Note that a comparison of the elastic aniso-
tropic and elastic isotropic dependences at the same p means 

that the latter are plotted using the values of the elastic isotro-
pic Young’s modulus and Poisson’s ratio determined for the 
[001] orientation (6):

E = E[001],

n = n[001],
 (9)

which may not correspond to the tabular data presented in 
the literature. In the case of discrepancy, the dependences of 
the degree of depolarisation on the dimensional power PS can 
relate to each other differently, in particular, be much closer 
to each other.

From the expressions given in [3], it is easy to obtain that 
in a thin disk the phase difference d, proportional to the 
dimensionless heat release power p, differs from the elastically 
isotropic one only by the additional factor 1/Zdisk, which 
depends on the orientation of the crystal axes, while the angle 
of inclination of the polarisation vector of the eigenwave Y, 
in the expression for which Zdisk cancels out together with p, 
is equal to this angle in the isotropic elasticity approximation 
{see (32), (63) in [3]}. Therefore, these pairs of dependences 
are obtained from each other by compression or stretching 
along the horizontal axis, while the values of g∞ are the same. 
Recall that the value of Z is the ratio of in-plane stresses in the 
elastically isotropic approximation to the stresses in the elasti-
cally anisotropic calculation:
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Figure 2. (Colour online) Calculated analytically optimal integral degrees of depolarisation as functions of the dimensionless power of heat release 
in elements made of various crystals with three simplest orientations of the axes at r0 = 0.5R. The calculations were performed for elastic stresses 
calculated in the elastically isotropic approximation (green circles), for a crystal in the form of a thin disk (red triangles), as well as for the complete 
(dark blue squares) and simplified (blue diamonds) Sirotin solutions for a long rod.

Table 1. Material properties of real and model m3m crystals used in 
the calculations.

Medium xp xs n[001]

CaF2 – 0.47 [11, 12] 1.77 [13] 0.212 [13]

SrF2 – 0.284 [12] 1.25 [14] 0.266 [14]

KCl –2.32 [15] 2.69 [14] 0.135 [14]

YAG 3.2 [2] 0.965 [14] 0.25 [14]

LiF 0.49 [16] 0.53 [17] 0.287 [17]

1 3.2 1.77 0.212

2 3.2 0.44 0.212

3 0.49 2.69 0.135
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/Z s s= = =
iso . (10)

With the material parameters used in the calculation, Zdisk > 1; 
therefore, the degree of depolarisation in the disk grows and 
reaches the level g∞ more slowly than in the isotropic elasticity 
approximation.

For crystals in the form of a long rod, we use Sirotin’s 
solution [4], in which the factor Zs also differs from unity, but 
weakly depends on the crystal orientation: it is seen from 
Fig. 3a that near xs = 1 the ratio of in-plane stresses 

[ ]
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001
001
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=
=

=

]
]]
]g

gg
g  (11)

depends linearly and quadratically on the elastic anisotropy 
parameter in a disk and a rod made of crystals with the sim-
plest orientations of the crystallographic axes, respectively. 
We also proposed a simplified solution {see (51) in [3]}, in 
which this dependence was neglected. The second significant 
difference of the solution for a long rod from the elastically 
isotropic approximation is the inequality of the stigmatic 

component of the stress szz to the sum srr + sjj. This differ-
ence is expressed using the coefficients D01 in the simplified 
solution and D1 in the complete one {(45) taking into 
account (31) from [3]}:

D01 » Z
2 2

d d

rr

zz zz

zz

0

2

0

2

sp ps s

s j

s

s j

+
=

p p

jj
iso^ h

y y
. (12)

Sirotin’s solution also differs from the elastically isotropic 
one by the presence of azimuthal variation of szz and nonzero 
stresses sxz and syz. In the simplified solution, and for crystals 
with the simplest orientations of the axes in the complete one, 
sxz = syz = 0.

The difference of the coefficients D01 and D1 from unity, 
depending on xs, can be greatest for the [001] or [111] orienta-
tion (see Fig. 3b and Fig. 3 in [3]). However, in m3m crystals 
with the indicated orientations, these quantities do not affect 
birefringence due to the fact that the coefficients A1F and B1F 
are equal to zero in the expressions for d and Y {see (65), (67) 
in [3]}. In this regard, the effect is observed in Fig. 2 only for 
the [011] orientation and is as follows. Analysis of the stress 
field in the rod {(51) and (A2.6) in [3]} shows that at xs > 1 
and n[001] > 0 the values of D01 and D1 for crystals with this 
orientation are less than unity (Fig. 3b), which causes an 
increase in the coefficient I∞ {see (91) in [3]}. This means an 
increase in the misorientation of the polarisation vectors of 
eigenwaves in the paraxial region of the active element, which 
causes an increase in g∞ at a small radius of the probe beam 
(see [10] and section 5.2.4 in [3]). In accordance with this fact, 
in all dependences in Fig. 2, the degree of depolarisation with 
strong birefringence in a rod with the [011] orientation is 
greater than the elastically isotropic estimate. In addition, the 
degrees of depolarisation for the simplified and complete 
solutions for a long rod are, as a rule, very close (in Section 5, 
the critical orientation, near which the differences are signifi-
cant, will be considered).

Note that for the considered fluoride and KCl crystals 
with weak birefringence, the [111] orientation turns out to be 
better than the [001] orientation (see also [11, 18]), while in 
many media, for example, in YAG and TGG, the situation is 
opposite [5 , 6, 19]. It was shown in [11] that the [111] orienta-
tion is preferable to the [001] orientation for media with –2 < 
xp < –0.2, and for CaF2, whose xp parameter is close to –0.5, 
the advantage of the [111] orientation is especially pro-
nounced, since at this value it coincides with the critical orien-
tation.

We also note that the dependences in Fig. 2 are plotted up 
to very high thermal powers, which are not achievable in 
practice due to mechanical destruction of materials, and their 
right-hand sides are only of academic interest. Thus, for a 
10-cm-long CaF2 rod, the ultimate strength corresponds to 
pmax = 90 at a wavelength of 1 mm, and for KCl, under the 
same conditions, pmax = 15 [20]. In addition, diffraction effects 
are not taken into account in the plane wave approximation.

From the point of view of choosing the optimal orienta-
tion, m3m crystals can be divided into two classes. In media 
with xp < 0, there is a critical orientation of the [MMN] type 
(see Section 5.2.1 in [3]), in which the axes of the permittivity 
tensor in the entire cross section of the active element are 
aligned in one direction, and therefore depolarisation can 
theoretically vanish [21, 22]. This orientation is preferable 
and, therefore, comparing the dependences in Figs  2a – 2c 
with each other does not make much practical sense. The 
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Figure 3. (Colour online) Elastic anisotropy parameter for media with 
the coefficient n[001], equal to n[001] for CaF2 and KCl vs. (a) variations in 
in-plane stresses in disks and rods made of crystals with the simplest 
orientations of crystallographic axes and (b) normalised stigmatic com-
ponents of szz (12) in the rod. 
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position of the critical orientation in elastically anisotropic 
media will be considered in Section 5. In m3m crystals with xp 
> 0, the optimal orientation in the elastically isotropic 
approximation is, as a rule, either [001] or [011] orientation 
[6,  10]. This case will be considered in Section 4.

4. Thermal depolarisation in m3m single crystals 
in the absence of critical orientation

The dependence of the degree of depolarisation on orienta-
tion is qualitatively determined not only by the sign of the 
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parameter xp, but also by whether its modulus is greater or 
less than unity.

4.1. Case of xp > 1

The ratios of the optimal degrees of depolarisation in aniso-
tropic and elastically isotropic calculations for model media 
with the most interesting orientations, such as [M0N] and 
[MMN] (see Fig. 1), are shown in Fig. 4. With relatively low 
birefringence (p = 1, Figs 4a, 4d, 4g, 4j; 4c, 4f, 4i, 4l), this ratio 
for a thin disk is close to Zdisk

2- , the value that it is equal to in 
the weak birefringence approximation {see (54), (63) in [3]}. 
For p >>  1 (Figs 4b, 4e, 4h, 4k), the ratio for the disk is always 
equal to unity, since g∞ does not depend on d and, therefore, 
on Zdisk.

For the rod, the ratio of the degrees of depolarisation 
deviates from Zs

–2. This difference, as noted in Section 3, is 
mainly due to the behaviour of the D1 (or D01) coefficient.

Deviations of the degree of depolarisation from the results 
of the elastic-isotropic calculation are more pronounced 
under weak birefringence than under strong one. With weak 
birefringence and under condition (9), they can be, depending 
on the values of the material parameters, twice greater or 
twice less. In this case, the variation in the ratios of the opti-
mal degrees of depolarisation, depending on the orientation 
of the crystal, can reach tens of percent (twice as much as in 
Fig. 3a); therefore, taking into account the anisotropy of elas-
tic properties is important for correct calculation. With strong 
birefringence, both deviations are 5 % – 10 %, and their depen-
dence on orientation is more complex.

On the whole, in the considered case, the effect on the 
degree of depolarisation of the anisotropy of the elastic prop-
erties of the medium is weaker than the anisotropy of the pho-
toelastic properties; therefore, the optimal orientations of the 
axes in the elastically anisotropic case are generally the same 
as in the elastic-isotropic case. In Fig. 4 and Fig. 2d, the opti-
mal orientation for any heat release power is the [001] orienta-
tion; however, with a decrease in the probe beam radius under 
strong birefringence, the [011] orientation becomes prefera-
ble. The disadvantage of this regime is the ineffective use of 
the pump radiation and the volume of the crystal. Mukhin et 
al. [10] showed that with a more practically favourable syn-
chronous decrease in the radii of the pump and probe radia-
tion beams, the [011] orientation will be the best with an even 
less efficient use of the crystal volume. This regime cannot be 
investigated analytically in media with anisotropic elasticity, 
since the expressions for the stress field are unknown to us.

Theoretically, a situation is possible when elastic anisot-
ropy is comparable to or stronger than photoelastic, and the 
degree of depolarisation in an elastically anisotropic medium 
is qualitatively different from elastically isotropic. In this 
case, the optimal orientations may also change. This rather 
specific case will be considered in the third part of the work.

4.2. Case of 0 < xp < 1

When | xp | < 1, the optimal degree of depolarisation in the 
elastically isotropic approximation for all orientations of the 
form [M0N] in the weak birefringence approximation is the 
same, and for xp > 0 it is also minimal among all orientations. 
In elastically anisotropic media, this constancy is not 
observed, which is illustrated in Figs 5a and 5b. In a thin disk, 
the deviation from the results of the elastic isotropic calcula-
tion is due only to the value of Zdisk. As follows from Fig. 3a, 

for xs < 1 the optimal orientation is [001], and for xs > 1 the 
optimal orientation is [011]. In a simplified solution for a rod, 
the degree of depolarisation in crystals with the [M0N] orien-
tations is almost constant. This indicates that its behaviour in 
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Figure 5. (Colour online) Calculated analytically optimal integral de-
grees of depolarisation in LiF (a, c) and in medium 3 (b) for the orienta-
tions [M0N] (a = 0, solid curves) and [MMN] (a = p/4, dashed curves) 
at p = 5 (a, b) and p >>  1 (c) in a disk (red triangles), in a long rod 
[stresses are calculated by the complete (dark blue squares) and simpli-
fied (blue diamonds) Sirotin solutions], in the elastically isotropic ap-
proximation (green circles, and at p = 5 also a scaled graph, dashed 
line). The probe beam radius is 0.7R.
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the exact solution is also mainly due to the magnitude of the 
in-plane stresses. In most cases, with weak birefringence, the 
optimal orientation in the rod will be [001], since the value of 
1/Zs for this orientation is less than for [011].

With strong birefringence, the [011] orientation is optimal 
even at large probe beam radii (Fig. 5c). Since, as noted 
above, the difference between the stress szz and the elastically 
isotropic stress in the rod for this orientation is small, the elas-
tic anisotropy is weakly manifested.

Thus, for xp > 1, as well as for 0 < xp < 1 and strong bire-
fringence, the optimal orientations in an elastically anisotro-
pic crystal, as a rule, coincide with those found earlier in the 
elastically isotropic approximation. At 0 < xp < 1 and weak 
birefringence, they are entirely determined by the elastic 
properties of the medium.

5. Critical orientation in m3m single crystals 
with a negative parameter of photoelastic 
anisotropy

Figure 6 shows the dependences of the optimal degree of 
depolarisation on the Euler angle b under relatively weak 
birefringence in CaF2, SrF2, and KCl with the [MMN] ori-
entations. For comparison, we also present the dependences 
for a long rod, obtained using Parfenov’s solution to the 
elasticity problem [23]. Calculations show that for a thin 
disk the shape of the dependence differs from the approxi-
mation of isotropic elasticity; however, when Sirotin’s solu-
tion for a long rod is used to calculate the stress field, the 
differences are small and are most pronounced in the vicin-
ity of the [110] orientation (as our calculations show, this 
difference is most significant at | xp | > 1.5 – 2.0 and a small 
diameter of the probe beam).

It can be seen from Fig. 6 that the simplest orientation 
[111] is a point of a local maximum of the optimal degree of 
depolarisation g, even when for this orientation it is less than 
for [001]. The degree of depolarisation decreases to zero for 
the critical orientation, and in a thin disk and when the sim-
plified Sirotin solution for a long rod is used to calculate 
stress fields, it coincides with the critical orientation in the 
elastically isotropic approximation [[C]], which is determined 
by the Euler angles

a = p/4 + pk/2,

tan2b = – x–1,

 (13)

where x = xp (see Section 5.2.1 in [3]). When use is made of the 
complete Sirotin solution for a long rod, the critical orienta-
tion [[Cs]] can deviate from [[C]] by a value from fractions to 
units of a degree. The reason for the discrepancy is the 
inequality of the stresses sxz and syz to zero. Parfenov’s solu-
tion to the elasticity problem in a cubic crystal is a generalised 
plane deformation (see Section 4.3.2 in [3]); therefore, the 
critical orientation in it is determined by expression (13) with 
x = xp {see (59a) in [3]} [21] and, as can be seen from Fig. 6 
and as shown theoretically in Section 5.2.1 of [3], is deter-
mined with a large error.

Let us consider in more detail the behaviour of the degree 
of depolarisation in crystals with a close-to-critical orienta-
tion of the axes. Figure 7 shows the numerically calculated 
angles d[[C]] of deviation of the [[Cs]] direction in a long rod 
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Figure 6. (Colour online) Calculated analytically optimal integral de-
grees of depolarisation as a function of the Euler angle b in (a) CaF2, (b) 
SrF2, and (c) KCl with orientations [MMN] (a = p/4) at p = 3. The 
probe beam radius is 0.8R. The calculations were performed in the ap-
proximation of isotropic elasticity (green circles, as well as the scaled 
dependences – black dashed curves) for crystals in the form of a thin 
disk (red triangles), for crystals in the form of a long rod [the stress field 
is calculated by the complete (dark blue squares) and simplified (blue 
diamonds) Sirotin solutions], as well as for crystals in the form of a long 
rod using Parfenov’s solution to the elasticity problem – black dash-
dotted curves. The simplest orientations are indicated by vertical dashed 
lines (a).
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from the estimated value [[C]], as well as the relative values of 
the residual depolarisation

, ,
C

min
[[ ]

001 011 111
]

Ng
g g g

g
= ] ] ]

]
g g g

g
5 5 56 ? ? ? @ , (14)

that is, optimal integral degrees of depolarisation normalised 
by the minimum among the three simplest orientations ([001], 
[011], and [111]), corresponding to this estimate in CaF2, KCl, 
and SrF2. Figure 7 also presents the dependence of angles of 
deviation and residual depolarisation on xp in model media 
with parameters n[001] and xs equal to these parameters for 
CaF2 and for KCl. One can see that at –1 < xp < 0 , the dif-
ferences in the positions of the two orientations do not exceed 
1° and vanish at xp = –0.5. These differences, as a rule, are 
insignificant from a practical point of view, since they corre-
spond to the lateral drift of the beam by 1 – 2 mm over a crys-
tal length of 10 cm and, in experimental implementation, can 
be compensated for by adjusting the optical system. Accurate 
observance of the critical orientation at the stage of sample 
preparation can be essential in lasers with a multi-kilowatt 
average power level and diffraction quality of the beam, as 
well as in cases where alignment of the system is difficult.

At xp < –2, the angle d[[C]] with strong elastic anisotropy 
increases to several degrees. With a further decrease in xp, the 
critical orientation tends to [001] and the angle tends to zero, 
but gN in this case grows to ~0.1, which makes a loss in the 
degree of depolarisation from missing the critical orientation 
more significant.

It can be seen from Figs 6 and 7 that for crystals with a 
close-to-critical orientation, the relative changes in the calcu-
lated degree of depolarisation in the rod due to its smallness 
in absolute value turn out to be very sensitive to the use of 
various approximations. However, in the case of using the 
analytical estimate [[C]] to determine the critical orientation 
[[Cs]] in a long rod, the residual degree of depolarisation still 

remains two to three orders of magnitude less than for the 
best of the simplest orientations; for | xp |, it is much less than 
or of the order of unity and an order of magnitude less for 
| xp | >> 1. Nevertheless, it should be borne in mind that, due to 
the sharp dependence of the degree of depolarisation on ori-
entation, the difference between a real experiment and an ide-
alised computational model can lead to strong deviations of 
experimental results from theoretical predictions. The rea-
sons may be, in particular, nonobservance of the geometry of 
the long rod, which makes the influence of its end faces notice-
able, as well as the presence of defects in the crystal structure 
of the sample, which cause constant built-in elastic stresses 
and, as a consequence, the so-called cold distortions of the 
beam. In particular, in an experiment with CaF2 [11], it was 
possible to achieve a 20 times lower degree of depolarisation 
than for the [001] orientation; however, the calculated degree 
of depolarisation for the [111] orientation – the local maxi-
mum in the inset in Fig. 6a – should have been still approxi-
mately 25 times less. It was noted in [11] that such a result 
could be obtained, in particular, when the crystal orientation 
deviates by 2° from the optimal one, which also follows from 
the inset in Fig. 6a.

6. Conclusions

We have studied the thermally induced depolarisation of a 
laser beam in cylindrical active elements in the form of a long 
rod and a thin disk made of single cubic sygony crystals of 
symmetry groups 432, 34r m, and m3m with an anisotropic 
elastic stiffness tensor under volume uniform pumping and 
lateral heat removal. The dependence of the degree of ther-
mally induced depolarisation on the orientation of the crys-
tallographic axes of crystals is analysed for different values of 
the photoelastic anisotropy parameter xp. With weak birefrin-
gence, the difference between the degree of depolarisation and 
the elastically isotropic approximation can reach, depending 
on the method for determining the isotropic elastic moduli 
and on the degree of anisotropy of elastic properties, from 
tens of percent to two times. The shapes of the dependences of 
the degree of depolarisation on the orientation of the axes 
also differ, with differences being manifested in a long rod 
and in a thin disk. Discrepancy in the disk is generally more 
pronounced.

There are three ranges of values of the photoelastic anisot-
ropy parameter, in which elastic anisotropy affects differently 
the choice of the optimal orientation. For xp > 1, the optimal 
orientations in elastically anisotropic and elastically isotropic 
calculations, as a rule, coincide. At 0 < xp < 1 and with weak 
birefringence, the optimal orientation is determined only by the 
elastic properties of the medium and does not depend on the 
photoelastic properties, and with strong birefringence it gener-
ally coincides with the optimal elastically isotropic orientation.

For crystals with xp < 0, there is a critical orientation at 
which thermally induced depolarisation vanishes in theory. 
The position of this orientation in the disk is identical to that 
obtained in the elastically isotropic calculation, and in the 
long rod it differs by an angle of the order of a degree, which 
is much less than follows from the previous estimates. The use 
of the simplified solution to the elasticity problem does not 
make it possible to take into account this displacement.
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ERRATUM

Vyatkin A.G., Khazanov E.A. Quantum Electron., 50, 114 (2020).

The paper contains a number of misprints:
1. Table 1 (p. 122) shows the incorrect value of the parameter xp for KCl. The correct value is indicated in Table 1 of this 

paper and is used in the calculations.
2. On page 117, in the second paragraph of the left column, in a sentence beginning with the words ‘Soms and Tarasov also 

noted,’ instead of m3 crystals, we talk about m3m crystals.
3. On page 129 in the first paragraph of Section 5.3.1, instead of m3 crystals, we talk about m3m crystals.


