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Abstract.  We report a numerical simulation of the propagation of 
short (25 ps) 8QAM pulses for two polarisations in a nine-channel 
communication line with a frequency band of 80 GHz. It is shown 
that the use of large-chirp pulses and different dispersion compen-
sators leads to effective suppression of nonlinear distortions and 
significantly improves the signal quality in a multichannel commu-
nication line due to the rapid pulse broadening.

Keywords: fibre-optic communication lines, mathematical model-
ling, nonlinear Schrödinger equation, wavelength division multi-
plexing, chirp.

1. Introduction

The permanent need for increasing the traffic throughput in 
fibre lines by about 40 % per year stimulated the development 
of new optical communication technologies [1, 2]. They 
include wavelength division multiplexing (WDM) of channels 
[3], coherent detection [4], and electronic compensation for 
accumulated dispersion [5]. Wavelength division multiplexing 
allows parallel data transmission at different wavelengths, 
thereby increasing the channel capacity by two orders of mag-
nitude. Coherent detection is a method for measuring the 
complex amplitude, which makes it possible to organise phase 
and amplitude keying together with polarisation multiplexing 
and transmit several bits in one pulse using special spectrally 
efficient modulation formats [6]. 

During transmission, the signal is distorted mainly due to 
amplifier noise and Kerr nonlinearity. Kerr nonlinearity gives 
rise to a number of effects, such as interchannel coupling, a 
change in the pulse shape due to adjacent bits in one channel 
(pattern effect), interaction of a signal with amplified noise, 
etc. Each nonlinear effect increases the probability of errone-
ous signal recognition. For example, intra-channel cross-
modulation causes jitter and even the appearance of ghost 
pulses observed in the experiment [7]. An important task is to 
develop methods for suppressing nonlinearity due to disper-
sive spreading of pulses. Chromatic and polarisation disper-
sion can be compensated for at the receiving end of the line 
using coherent reception and digital processing without inter-
mediate compensators, and nonlinear effects are noticeably 

reduced due to the small amplitude of pulses after spreading 
[8, 9]. 

At the same time, dispersive spreading occurs rather 
slowly, and so it was proposed to impart a large chirp to the 
pulses at the transmitter, and to compensate for it at the 
receiver during single-channel transmission [10]. Then, when 
the signal propagates, its amplitude will be small, and there-
fore, nonlinear noise will decrease. The authors of Ref. [11] 
proposed to use, in addition to the chirp, variable dispersion 
compensation, i.e., different compensators in different sec-
tions of the line. It was shown that nonlinear distortion in one 
channel is reduced. At the same time, a pulse with a large 
chirp has a wide spectrum, and its energy can go into neigh-
bouring channels. Therefore, the problem of chirped pulses in 
a WDM communication line was not solved.

In this paper, we consider the propagation of optical 
pulses in nine channels with a frequency band of 80 GHz 
each. We numerically simulated the propagation of Gaussian 
pulses with a bit interval of 25 ps in the framework of coupled 
nonlinear Schrödinger equations [12 – 14] for two polarisa-
tions. In addition, to reduce the Kerr nonlinearity in the cal-
culations, variable dispersion compensators were used, pro-
viding a quadratic increase in the compensation in the line 
from section to section. As a result, almost all of the accumu-
lated dispersion was compensated for at the end of the line. It 
is shown that the use of a large chirp simultaneously with 
variable dispersion compensation significantly improves the 
signal quality in a multichannel system. 

The paper also shows that the peak power of Gaussian 
pulses passed through an optical filter decreases the faster the 
larger the chirp value. By a peak pulse power, we mean the 
maximum power value. Thus, the peak power is reached in 
the middle of the bit slots for each individual Gaussian pulse 
train. Peak power causes phase distortion, and so its steep 
decrease reduces nonlinear noise. 

2. Peak power 

After passing through a rectangular filter with width L and 
subsequent chirping, a Gaussian pulse a(t) = exp[– t2/(2T0

2)], 
where T0 is the pulse width parameter, is given by the formula 

( ) exp expi i da t
T
C t T T k kt k
2 2 2

1
/

/

L

L

0
2
2 0

0
2 2

2

2

p
= - +

-
c `m jy

	 1 . .exp i erf i c c
T
C t T L

T
t

2
1

2 2 20
2

2 0

0
2= - - - +c cm m; E' 1. 

Filtering changes the pulse shape, especially for small values 
of the width parameter T0. 
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First, we obtain an approximation for the error function 
using the Taylor series expansion and the formula 

( )
( ) ( ) ( )exp

d
d erf

x
x

H x x1 2
n

n
n

n1

1
2

p
= - -+

+

, 

where Hn(x) is a Hermite polynomial [15]. We set x = T0 L ´ 
(2 2 ) –1 and the increment Dx = – it/( 2 T0), then in the vicin-
ity of t = 0, the expansion of a(t) to the fourth order of small-
ness takes the form 
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The pulse shape A(z, t) with the boundary condition A(0, t) = 
a(t) during propagation along the fibre is determined by the 
equation
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where b2 is the parameter of the dispersion effect; t is the time; 
and z is the distance (the nonlinearity is ignored). 

We denote /D 22b= -u . Then the solution of Eqn (2) is 
written as
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With the broadening of the optical pulse, the peak power at 
t = 0 decreases. With expansion (1) taken into account, the 
dynamics of the peak pulse power in a linear medium is given 
by the formula
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Phase distortions of the signal are due to the Kerr nonlin-
earity, and they are the greater, the greater the peak power of 
the pulses. For the propagation of an ideal Gaussian pulse 
F(t, 0) = exp [– (1 – iC)t2/(2T0

2 ), L ® ¥, in a linear medium, the 
derivative ¶ |F(0, z)|2/¶z ~ – C, i.e., the peak power decreases 
with increasing z, the faster the larger the chirp C. The use of 
filters that separate the channels changes the shape of the 
pulses. The smaller the parameter T0, the more noticeable 
these changes. The decrease in the peak power of the pulse at 
a finite value of L also occurs the faster, the larger the param-
eter C. This can be shown by direct differentiation of |A(0, z)|2 
using expansion (3). 

Figure 1 shows the dependences of |A(0, z)|2 on the dis-
tance z according to Eqn (3) for C = 0, 1, 10, and 20 at L = 
80 GHz. It is seen that the peak power sharply decreases at 
large values of C. Therefore, for pulses with a large chirp, 
instead of the nonlinear Schrödinger equation, one can use 
the approximate equation (2). For comparison, the dots indi-
cate the same dependences calculated within the framework 
of the nonlinear Schrödinger equation with zero damping. 
With an increase in chirp, the deviation practically disappears 
and the curves are in good agreement with the numerical cal-
culation. The peak power decreases monotonically with 
increasing distance. 

As a large-chirp Gaussian pulse train propagates, adja-
cent bits begin to overlap and each individual bit is propa-
gated in multiple bit slots. Broadened pulses are less prone to 
nonlinear distortion. The propagation regime without high 
peak powers begins the faster, the larger the parameter C. 
Thus, the use of a large chirp causes a sharp decrease in the 
peak power of the pulses and thereby suppresses the distor-
tions caused by nonlinearity. Below are the results of numeri-
cal simulation of the propagation of an 8QAM signal in nine 
channels of a communication line with a length of 1500 km 
only for polarisation Ax, since the results for Ax and Ay are the 
same. The plots refer to the central channel. 

3. Numerical simulation 

The communication line consisted of 15 periodic sections of 
the form 

SMF (100 km) + EDFA + DC(i), 

where SMF is a standard single-mode fibre; EDFA is an 
erbium-doped fibre amplifier; and DC(i) is a dispersion com-
pensator with number i. Let us denote by di the dispersion 
compensated by the DC(i) device. The parameters of the 
SMF fibre used in the calculations are shown below. 

Attenuation at l = 1550 nm/dB km–1  .  .  .  .  .  .  .  .  .  .  .  .            0.2

Effective area/mm2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                       80

Chromatic dispersion/ps nm–1 km–1  .  .  .  .  .  .  .  .  .  .  .  .  .             17

Dispersion slope/ps nm–2 km–1   .   .   .   .   .   .   .   .   .   .   .   .   .   .   0.07

Nonlinear refractive index/m2 W–1  .   .   .   .   .   .   .   .   .  2.7 ´ 10–20
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Figure 1.  Peak power |A(0, z)|2 vs. distance z for C = ( 1 ) 0, ( 2 ) 1, ( 3 ) 10, 
and ( 4 ) 20 (the points correspond to the numerical calculation taking 
the Kerr nonlinearity into account). The curves are plotted according to 
the approximate formula (3).
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In this paper, we used variable dispersion compensation, 
i.e., devices with different compensation values. This method 
of removing dispersion distortions was proposed in Ref. [11], 
where a simulation of the propagation of pulses in a commu-
nication line was performed with devices, whose compensa-
tion values form an arithmetic progression, and the average 
line dispersion is equal to zero. Variable dispersion compen-
sation reduces nonlinear distortion because optical pulses 
recover shape only at the end of the communication line. 

The accumulated dispersion from 15 sections of the SMF 
fibre was 25500 ps nm–1. In our case, the values of dispersion 
compensation di grow quadratically and the total correspond-
ing compensation is equal to 25500 ps nm–1. We placed the 
first compensator after the 5th section, i.e. d1 – 4 = 0. For other 
di, the following values were taken: d5 = 628 ps nm–1, d6 = 
904.4 ps nm–1, d7 = 1231 ps nm–1, d8 = 1608 ps nm–1, d9 = 
2035 ps nm–1, d10 = 2512 ps nm–1, d11 = 3040 ps nm–1, d12 = 
3617 ps nm–1, d13 = 4246 ps nm–1, d14 = 4924 ps nm–1, and 
d15 = 754 ps nm–1. 

It was assumed that periodic compensation of dispersion 
is implemented using modern devices with low signal attenu-
ation based on Bragg gratings [16, 17]. A white Gaussian 
noise model was taken to describe the amplified spontaneous 
emission (ASE) noise of point erbium amplifiers. We ignored 
the distortions caused by polarisation mode dispersion. 

The signal was transmitted in nine channels with a spec-
tral separation of 80 GHz. Before channelisation, the optical 
pulses were passed through an 80 GHz rectangular filter to 
avoid distortions from the code sequences of adjacent chan-
nels. After combining the channels, the signal was chirped 
before entering the line, which mathematically means multi-
plying the bit interval with number n by exp [iC(t – nT )2 ´ 
(2T0

2)–1. 
We have considered the transmission of information, 

which is encoded by eight phase-amplitude levels of Gaussian 
pulses for the polarisations Ax and Ay. Figure 2 shows the 
modulation scheme for the 8QAM format in the plane of the 
complex amplitude of a single polarisation signal. 

Gaussian pulses before the filter were specified by the for-
mulae 
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where the independent quantities Xn, Yn are equal to either B 
or 2B with probability 1/2. If Xn = B, then xnx  is a random 
variable taking with probability 1/4 one of the values from the 
set {e ip/4, e –ip/4, e 3ip/4, e –3ip/4}; if Xn = 2B, then xnx  takes one of 
the values from the set {1, i, 1, – i} also with probability 1/4. 
The quantity ynx  is defined similarly. The bit interval is T = 
25 ps, the pulse width parameter is T0 = 6 ps. 

Figure 3 shows the power spectra of the input signal and 
the signal after chirping with the parameter C = 10. It can be 
seen that the chirp broadens the signal frequency band; there-
fore, to separate the channels at the receiving device, the bit 
interval with number n was multiplied by exp [– iC(t – nT)2 ´ 

(2T0
2)–1]. Then, using filters, individual channels were selected. 

To demonstrate the suppression of nonlinear noise using 
a large chirp, we simulated signal propagation in a line with 
ideal EDFAs, i.e., in the absence of noise. Figure 4 shows 
the signal diagrams of the central channel for the chirp 
parameters C = 0 and 20; the peak power is 0.94 mW. The 
probability of errors without a chirp was 3.7 ´ 10–4. In the 
case of using the chirp, there were no errors in the sample of 
18000 bits. 

One of the main causes of signal distortion is amplifier 
noise. Figure 5 shows signal diagrams taking into account the 
noise of the amplifiers for the same values of parameter C. 
The error probabilities in Figs 5a and 5b are 1.54 ´ 10–3 and 
2.5 ´ 10–4, respectively. Thus, even if the signal is distorted by 
ASE noises, the error probability decreases markedly for a 
signal with a large chirp. 

B B

Figure 2.  Schematic representation of the 8QAM format in the com-
plex amplitude plane. The dots indicate the amplitude values (Ax or Ay) 
for different bit sequences.
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Figure 3.  Power spectrum of (a) input and (b) output signals (C = 10).
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4. Conclusions

We simulated the propagation of optical 8QAM pulses in a 
9-channel communication line with quadratic dispersion 
compensation. It is shown that, despite the broadening of the 
frequency band, the chirp provides a higher signal quality. 
The advantage of a large chirp is substantiated analytically. 
Pulses with a large chirp are shown to quickly lose their peak 
power, which provides an effective reduction in nonlinear dis-
tortions. The results obtained can be useful both when choos-
ing a design for a high-speed communication line, and when 
renovating existing lines.
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Figure 4.  Signal diagrams of the bit sequence of the central channel for the chirp parameters C = (a) 0 and (b) 20; the peak power is B2 = 0.94 mW.

0

0

–0.04 0.04 Re|A| 0

0

–0.04 0.04 Re|A|

0.02

–0.02

–0.04

–0.06

–0.08

0.04

Im|A|

0.02

–0.02

–0.04

–0.06

–0.08

0.04

Im|A|
a b

Figure 5.  Signal diagrams taking into account the ASE noise of the amplifiers for C = (a) 0 and (b) 20; the peak power is B2 = 0.94 mW.


