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Abstract. We report a study of thermally induced depolarisation of 
a laser beam in single cubic syngony crystals of 23 and m3 symme-
try groups with an anisotropic elastic stiffness tensor. For active 
elements in the form of a long rod and a thin disk with radial cool-
ing under uniform volume pumping, we investigate the effect of 
anisotropy of elastic properties on the dependence of the degree of 
depolarisation in the crystal on the orientation of the crystallo-
graphic axes, as well as on the position of the critical orientation in 
the crystallographic coordinate system.

Keywords: high average power lasers, photoelastic effect, thermally 
induced depolarisation, anisotropy of cubic crystals.

1. Introduction

Thermal effects are an important factor limiting the power 
and quality of the output radiation of solid-state lasers [1, 2]. 
Thermally induced depolarisation of radiation in initially 
optically isotropic media – cubic single crystals, glasses, and 
ceramics – has been studied theoretically and experimentally 
since the 1960s. Except for few works, in cubic crystals, as a 
rule, only the anisotropy of the photoelastic effect is taken 
into account, whereas the elastic properties of materials are 
considered to be isotropic (see [3] and references therein). 
However, already at the beginning of research it was known 
that this was only an approximation, and a solution to the 
elasticity problem for a parabolic temperature profile was 
found [4].

We study thermally induced beam distortions in single 
cubic syngony crystals of all symmetry groups taking into 
account the anisotropy of their elastic properties, as well as at 
an arbitrary orientation of the crystallographic axes. In the 
first part of our work (paper [3]), we obtained expressions for 
the phase and polarisation distortions of the beam in active 
elements in the form of a long rod and a thin disk. We found 
eighenpolarisations, as well as the arithmetic mean and the 
difference between the incursions of their phases; considered 
the specific orientations of crystals; and determined the effec-
tive values of the thermo-optical constants P and Q. In the 
second part of our work (paper [5]), we studied thermally 
induced depolarisation in single crystals of symmetry groups 
432, 43mr , and m3m. This paper – the third part of our work 

– is devoted to the analysis of thermally induced depolarisa-
tion of radiation in elastically anisotropic single crystals of 
symmetry groups 23 and m3 in comparison with the elasti-
cally isotropic case and to finding optimal orientations of 
crystallographic axes under weak and strong birefringence, 
which makes it possible to minimise the degree of depolarisa-
tion. In Section 2 we introduce the notations necessary for the 
statement of the problem. In Section 3 we determine the spe-
cific orientations in m3 crystals, and in Section 4 we investi-
gate the degree of depolarisation in single crystals for which 
critical orientation is absent. In Section 5 we examine the crit-
ical orientation in crystals with a negative value of the first 
parameter of the photoelastic anisotropy. 

2. Statement of the problem and some notations

In the framework of this work, we restrict ourselves to media 
that do not rotate the polarisation plane. We will consider 
an active element in the form of a cylinder, the z axis of 
which coincides with the propagation direction of probe 
radiation. This element can be cut from the bulk of a crystal 
in various directions and is uniquely specified by the posi-
tion of its axis in the crystallographic coordinates. This can 
be done using the first two of the three Euler angles – azi-
muthal (a) and polar (b) (see Figs 1a, 1b, and 1d in [3]), 
while the third Euler angle (F) will be equal, with the oppo-
site sign, to the angle of rotation of the active element 
around its axis relative to the laboratory coordinate system 
(see Figs 1c and 1d in [3]).

It is customary to say that a pair of Euler angles (a, b) 
defines the orientation of the crystal, also denoted by the 
Miller indices [MNP]. In this paper, major attention is paid 
to [M0N] and [MMN] orientations shown in Fig. 1. 
Following the generally accepted approach, we will not dis-
tinguish between orientations obtained from each other by 
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Figure 1. (a) Orientations [M0N] (a = 0) in the crystallographic coordi-
nate system (a, b, c) and (b) orientations [MMN] (a = p/4).
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cyclic permutation of indices ([NPM], [PMN]) and changing 
the signs of indices ([MNPr ], [MNPr r ], etc.) due to their equiv-
alence [6].

Let us consider an active element in the form of a long rod 
or thin disk of radius R, heated uniformly throughout the 
bulk and cooled through the lateral surface. The temperature 
and elastic stress fields are given in [3] and do not depend on 
z, if we neglect the end effects in the rod.

The lateral cooling of a thin disk is not optimal, but it 
allows the degree of depolarisation to be calculated analyti-
cally. We believe that the regularities we have identified will 
be applicable in the case of end-face heat removal, despite the 
impossibility of a quantitative assessment of thermally 
induced beam distortions.

The local degree of depolarisation G is commonly referred 
to as the fraction of the radiation intensity that has passed 
during propagation through a birefringent optical system into 
the polarisation that is orthogonal to the initial one. A similar 
fraction of power is called the integral degree of depolarisa-
tion. In the plane wave approximation, it is easy to obtain 
that after a laser beam, initially linearly polarised in the per-
pendicular plane xy at an angle q to the x axis, passes along 
the axis of one active element, the permittivity tensor of which 
is independent of z, the local degree of polarisation is 
expressed as

G (x, y) = sin2(d/2)sin2 [2(Y – q)], (1)

where Y (x, y) is the angle of inclination of the polarisation 
vector of one of the eigenwaves in the active element, and 
d(x, y) is the difference between the incursions of their phases. 
Averaging (1) over the cross section of the probe beam with 
the field intensity Ein(x, y), we obtain the integral degree of 
depolarisation

| | | |d dS SE Ein in
S S

2
1

2g G=
-

c myy yy  (2)

(for simplicity, we assume that there is no absorption and 
amplification of probe radiation in the medium). With strong 
birefringence, g tends to a steady-state value

| | | |d dS SE Ein in
S S

2
1

2g G=3 3

- uc myy yy , (3)

where [2( )]sin2
1 2 qG Y= -3

u  (see [7] and Fig. 2 from [5]).
In [3] we obtained expressions for d and Y in crystals with 

anisotropic elastic properties. Without going into details here, 
we note that they differ in a thin disk and a long rod, as well 
as that d is proportional to the dimensionless heat release 
power in an optical element and Y is independent of it. In the 
calculations, we use the dimensionless heat release power p, 
which was generalised to elastic anisotropic media in [3].

Cubic crystals can be divided into two types according to 
the form of their material tensors. In [5], crystals of the m3m, 
432, and 34r m symmetry groups were considered, which we 
agreed to call m3m crystals [3]. Their material tensors of the 
4th rank, the piezo-optical tensor p and the elastic compli-
ance tensor s, are determined by three independent nonzero 
coefficients, and their general form in two-index Nye nota-
tion is schematically presented in [8], as well as in Fig. 2a 
from [3]. In this paper, we will consider other cubic syngony 
crystals belonging to m3 and 23 symmetry groups, which we 
call m3 crystals. For them, the tensor s is the same, and the 

tensor p is determined by four independent coefficients (see 
Fig. 2b from [3]) [8].

The dependence of thermally induced beam distortions on 
the orientation of crystallographic axes in cubic crystals in the 
approximation of an isotropic elasticity problem is deter-
mined by the photoelastic anisotropy parameter x [7, 9], for 
which we use the piezo-optical ratio, taking into account the 
m3 symmetry properties. The photoelastic anisotropy param-
eter has the form [6]

xp = p66/ps, (4)

ps = p11 – 
2
1 (p12 + p21).

It was also shown there that in m3 crystals, along with the 
parameter x, it is necessary to determine the second parameter 
of photoelastic anisotropy

xd = (p12 – p21)/ps. (5)

In m3m crystals

ps = p11 – p12, 
(6)

xd = 0.

In [3], we obtained that, in media with anisotropic elastic 
properties, the dependence of thermally induced beam distor-
tions on orientation is modulated by functions that are deter-
mined by a combination of Poisson’s ratio n[001] for the [001] 
orientation  [10] with the elastic anisotropy parameter

( )s s
s

2s
11 12

66x =
-

.  (7)

For different orientations of the crystallographic axes, let us 
compare the degree of thermally induced depolarisation cal-
culated for elastically anisotropic cubic single crystals in the 
form of a long rod and a thin disk with that calculated in the 
isotropic elasticity approximation. We will focus on choosing 
the optimal orientation. Since in the experiment the angle F 
of rotation of the crystal, in contrast to the other Euler angles, 
can be easily changed after the manufacturing of the active 
element, we will investigate the degree of depolarisation that 
is minimal in F, which we will call optimal. To simplify the 
calculations, we will assume that the probe beam has a flat-
top transverse profile of the radiation intensity. Such beams 
are often generated in high-power multistage laser systems. 
Moreover, this assumption does not qualitatively affect the 
results. The beam radius is denoted by r0.

Recently, crystals of yttrium, scandium and lutetium ses-
quioxides have been of interest (see papers [11 – 13] and refer-
ences in [6]). However, the photoelastic properties of Y2O3 and 
Sc2O3 are known only partially [14], and there are no data on 
Lu2O3. Complete data are available only for rarely used crystals, 
and were often obtained quite a long time ago [8, 15]. Therefore, 
we also use in our calculations hypothetical media obtained by 
changing the properties of popular optical materials.

3. Specific orientations in elastically anisotropic 
m3 single crystals

In m3 crystals, the photoelastic effect has a reduced symmetry 
due to a lower symmetry of the crystal lattice than in m3m 
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crystals. Of the three simplest orientations, only the [111] ori-
entation retains its symmetry: the [001] orientation has a 
lower symmetry, while the [011] orientation does not have any 
at all [8]. In work [6], we showed that the special properties 
that the photoelastic effect exhibits in m3m crystals with these 
orientations are observed in elastically isotropic m3 crystals 
with more general [M0N] orientations, which we called [[A]] 
and [[B]]. The position of these orientations in crystals is 
determined by the ratio

qd = xd /(xp – 1).  (8)

In Section 5.2 of work [3], we showed that in an elastically 
anisotropic disk, as well as in the approximation of weak elas-
tic anisotropy {see (50) in [3]} in a long rod, the [[A]] orienta-
tion is specific, and the [[B]] orientation is present only in a 
disk; in a rod, it takes a new position, which we have denoted 
by [[B~]]. With a stronger elastic anisotropy in the rod, the 
specific orientations should change, but no analytical expres-
sions were obtained for the corresponding Euler angles.

The specific orientations [[C]] and [[D]] in m3 crystals, in 
contrast to m3m crystals, do not belong to the [MMN] set.

At the same time, the elastic compliance tensor retains the 
same symmetry as in m3m crystals, and this symmetry is inher-
ited by the dependences of the stress tensor components on the 
crystal orientation. Thus, thermally induced beam distortions 
in elastically anisotropic m3 crystals are determined by a com-
bination of two material tensors with different symmetries.

On the other hand, it was noted in [6] that the optimal 
orientations of the crystallographic axes of elastically isotro-
pic m3 crystals coincide with the specific orientations [[A]] 
and [[B]] only for probe beams of small radii, while for m3m 
crystals one of the simplest orientations is optimal for any 
beam profile [7]. It is obvious that taking into account the 
effects of elastic anisotropy in m3 crystals can lead to a shift 
in orientations that are optimal from the point of view of 
depolarisation relative to both elastically isotropic and spe-
cific orientations. Let us consider the problem of the position 
of optimal orientations in m3 crystals with different photo-
elastic properties.

4. Thermal depolarisation in m3 single crystals 
without critical orientation

It should be recalled that in m3 crystals the critical orientation 
is absent not only for xp > 0, but also for xp < –3, provided 
that |xd | exceeds the threshold value, greater than two. This 
value was determined in [6] and in (79) from [3] in the elasti-
cally isotropic approximation and in a thin disk. In the 
absence of the critical orientation, thermally induced depo-
larisation, as a rule, is minimised for one of the orientations of 
the [M0N] set [6]. As in m3m crystals, the behaviour of the 
degree of depolarisation in these orientations is qualitatively 
different, depending on the value of |xp|.

4.1. Case of |xp| > 1

Figure 2 shows the optimal degree of depolarisation g in 
model m3 single crystals with the same elastic parameters 
n[001] and xs as for CaF2, the parameter xp as for YAG, and 
three different xd: small (qd » 0.045), average (qd » 0.45) and 
large (qd » 1.045). The calculation was performed for rela-
tively small ( p = 1, g <<  g∞) and large ( p >>  1, g = g∞) dimen-
sionless heat release powers, as well as for probe beams of 

large (0.8R) and small (0.4R) radii. As in m3m crystals, in the 
case of weak birefringence, the degree of depolarisation dif-
fers from the elastically isotropic one by an order of tens of 
percent. However, this difference quantitatively depends on 
the method for determining the isotropic elastic moduli (see 
Section 3 in [5]). The kinks in the curves at p = 1 are due to the 
fact that the optimal value of the angle F changes by 45°.

One can see from the figure that with weak birefringence, 
the optimal orientation is close to the analytical estimate [[A]], 
and for a thin probe beam, as we noted in [6], the estimate 
works better. With strong birefringence, in the case of a thin 
probe beam, the optimal orientation is close to the estimates 
[[B]] and [[B~]] in the disk and in the rod, respectively, and in 
the case of a wide beam, to [[A]]. Note that [[B]] estimates the 
worst orientation with less accuracy, while in the rod [[B~]] 
can work worse than [[B]] (Figs 2h and 2k).

Note that the degree of depolarisation in the disk under 
strong birefringence coincides with the result of the elastic 
isotropic calculation (this property was already discussed in 
Section 5.1 of [3] and in Section 3 of [5]). In other cases for 
both considered crystal geometries allowance for the anisot-
ropy of elasticity leads to a slight shift in the optimal orienta-
tion of the crystal relative to the elastic isotropic one. We can 
also note the good accuracy of the simplified Sirotin solution 
for the rod, which deteriorates slightly with increasing |xd |. 
The degree of depolarisation for the [011] orientation remains 
independent of xd (see theorem 6 in [6]) in elastic anisotropic 
media as well. The minimum of the degree of depolarisation 
under weak birefringence is sharp (Figs 2b and 2c) in the case 
of a thin probe beam and strong photoelastic anisotropy (|xp| 
>>  1, |xd | L 1).

For large |xd |, the shape of the curve for a long rod in the 
case of a wide probe beam differs significantly from the elasti-
cally isotropic approximation. This is due to the difference in 
the values of stresses szz. The changes are concentrated near 
the [001] orientation (this is not the case in m3m crystals, see 
Section 3 in [5]), i.e., far from the [[A]] orientation, which is 
optimal under these conditions. The differences are less pro-
nounced near the [011] orientation.

With strong birefringence and a thin probe beam, the 
stress szz significantly affects depolarisation near the opti-
mal orientation [[B]]. Changes are also most pronounced 
for large |xd |, when [[B]] is close to [001]. Their mechanism 
is explained in Section 3 of [5] and in Section 4.2 of this 
work.

In media with negative xp and missing critical orientation, 
the effect of elastic anisotropy on thermally induced depolari-
sation and the optimal orientations of the crystal axes are, on 
the whole, the same. However, the advantage of the [[A]] ori-
entation in this case is more pronounced than for xp > 1, since 
the value of A2[[A]] is much smaller {see (108) in [3]}. In par-
ticular, A2[[A]] = 0 on the boundary of existence of the orienta-
tion [[C]] {(79) in [3]}. With weak birefringence, depolarisa-
tion is affected by the smallness of the effective thermo-opti-
cal constant Q eff, and with strong birefringence, by the large 
effective value of the anisotropy parameter x eff {see (108) in 
[3]}.

4.2. Case of 0 < xp < 1

At |xp| < 1, the optimal degree of depolarisation in the elasti-
cally isotropic approximation for all orientations of the 
[M0N] type in the weak birefringence limit is constant as in 
m3m crystals, and in the absence of a critical orientation it is 
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also minimal among all orientations. Since, in addition, for 
[011] the degree of depolarisation does not depend on xd [6], 
this property holds for all [M0N] orientations. In an elasti-
cally anisotropic crystal, the constancy of g is violated by the 
dependence of elastic stresses on orientation, and the optimal 
orientation is entirely determined by the elastic properties of 
the medium.

Aleksandrov et al. [14] presented the measured values of 
the elastic stiffness tensor components and the following 
elasto-optic constants for Y2O3 and Sc2O3: p11 – p21, p12, and 
p66. Unfortunately, this set does not make it possible to find 

either xp or xd. Moreover, the elasto-optic constants were 
found using a method that does not allow determining their 
sign.

However, if the second parameter of photoelastic anisot-
ropy is assumed to be zero, the first can be estimated in abso-
lute value, using the formula for an m3m crystal, and in both 
media it is less than unity (Table 1). In the weak birefringence 
approximation, the optimal degree of depolarisation for the 
[M0N] orientations is also independent of the sign of xp, and 
so we assume for definiteness that xp > 0 in sesquioxides. If 
this is not the case, then the error in our calculations will be 
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Figure 2. (Colour online) Calculated analytically optimal integral degrees of depolarisation for the orientations [M0N] (a = 0) as functions of the 
Euler angle b in m3 crystals with elastic properties as in CaF2, xp as in YAG, xd = (a, d, g, j) 0.1, (b, e, h, k) 1 and 2.3 (c, f, i, l) for p = 1 (a – c, g – i) 
and p >>  1 (d – f, j – l). The calculations were performed in the elastically isotropic approximation (green circles, and for p = 1 also scaled black 
dashed curves), for a thin disk (red triangles) and for a long rod [the stress field was calculated by the complete (dark blue squares) and simplified 
(blue diamonds) Sirotin solutions]. The probe beam radius is 0.4R (a – f) and 0.8R (g – l), the beams are schematically shown in the form of circles. 
The specific orientations are marked with vertical lines and are shown in panels j – l.
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negligible, but the optimal orientation will be the critical one, 
for which the available data are insufficient to find the posi-
tion.

Figure 3 shows the optimal integral degrees of depolarisa-
tion for the [M0N] orientations in two sesquioxides and in 
model crystals with xp = 0.2 in the case of a wide probe beam 
with average birefringence. The curves are plotted for xd = 0 
and 0.5 (for clarity, in the case of sesquioxides, the curves are 
shown at a constant  xp corresponding to xd = 0) (Table 1). 
The degrees of depolarisation at different xd differ due to 
violation of the condition of smallness of birefringence, but 
very weakly. Optimal orientations at xd = 0.5 deviate from 
the simplest ones also insignificantly. With this accuracy, 

the optimal orientations are determined in the same way as 
in m3m crystals (see Section 4.2 in [5]). In the elastically iso-
tropic approximation, the degree of depolarisation is virtu-
ally constant. For a thin disk, the optimal orientation at xs > 
1 is [011], and at xs < 1, [001]. In a long rod, the [001] orienta-
tion is almost always optimal. The variation in the degree of 
depolarisation for the [M0N] orientations is significant in the 
case of strong elastic anisotropy, when the simplified Sirotin 
solution is not accurate enough.

With strong birefringence, the [[A]] orientation, as for 
m3m crystals, ceases to be optimal starting from sufficiently 
wide probe beams, which is not observed at xp > 1 (Fig. 4). 
An orientation close to [[B]] in the disk and to [[B~]] in the rod 
becomes optimal; however, for wide probe beams, it signifi-
cantly deviates from the specific orientation toward [001]. In 
disks, the degree of depolarisation coincides with the elasti-
cally isotropic one. In rods with large |xd |, as the [[B~]] orien-
tation approaches [001], the magnitude of the stress szz begins 
to exert a strong influence on the degree of depolarisation for 
optimal orientation. For xs > 1 (Figs 4d – 4f), the stress is 
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Table 1. Material parameters of sesquioxides [14].

Medium xp xd xs n[001]

Y2O3 ±0.38(1 + xd /2) N/A 0.65 0.38

Sc2O3 ±0.64(1 + xd /2) N/A 0.78 0.34
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Figure 4. (Colour online) Calculated analytically optimal integral degrees of depolarisation for the orientations [M0N] (a = 0) at p >>  1 and r0 = 
0.7R in the elastically isotropic approximation and a thin disk (red triangles), as well as in a long rod (blue squares) at xd = (a, d) 0.1, (b, e) 0.25, and 
(c, f) 0.5 in Y2O3 (a – c) and a medium with xp = 0.2 and elastic properties as in KCl (d – f). The specific orientations are marked with vertical lines 
and are shown in panels b and e.
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greater than the elastic isotropic one (see Fig. 3b in [5]); there-
fore, the effect of aligning the polarisations of eigenwaves in 
the central region of the active element, which weakens the 
depolarisation, is more pronounced than in the elastically iso-
tropic approximation. For xs < 1, the situation is the opposite 
(Figs 4a – 4c). As noted in Section 4.1, this effect also occurs 
for  xp > 1.

Note that the degrees of depolarisation calculated for the 
stress fields obtained by the full and simplified Sirotin solu-
tions are close. (Their greatest discrepancy is observed in the 
vicinity of the [[A]] orientation, i.e., far from the optimal one.) 
Therefore, in each Fig. 4, only one dependence is shown for a 
long rod.

5. Critical orientation for elastically anisotropic 
m3 single crystals

Like in m3m crystals, the critical orientation in m3 crystals in 
the case of a thin disk ([[C]]) is the same as in the elastically 
isotropic approximation {see formulae (80) – (82) in [3]}, and 
for a long rod [[Cs]] can deviate from this position (see Section 
5.2.2 in [3]). Figure 5 shows the angles of deviation d[[C]] of the 
[[Cs]] orientation from the elastic isotropic estimate [[C]] for 
the rod, as well as the normalised integral depolarisation 
degree generalised to the case of m3 symmetry

N [ ([[ ]]), ([[ ]]), ([ ])]
([[ ]])

min A B
C

111
g

g g
g

=l  (9)

for an orientation corresponding to this estimate, in media 
with n[001] and xs as in CaF2 (Figs 5a, 5b) and as in KCl 
(Fig. 5c) as functions of xp at different xd (Figs 5a, 5c) and of 
xd at different xp (Fig. 5b). One can see that the deviation of 
the critical orientation at moderate xp, xd, and xs does not 
exceed several degrees. The loss in the degree of depolarisa-
tion under inaccurate tuning is significant only when both 
parameters of photoelastic anisotropy are large in magnitude 
simultaneously and is mainly due to the smallness of the 
degree of depolarisation for the [[A]] orientation due to its 
proximity to the critical orientation [[Cs]] [6] and, therefore, 
the smallness of the denominator in (9).

The decline of d[[С]] at xp < –3 on the curves corresponding 
to xd = 3 is due to the fact that the orientation [[Cs]] ceases to 
exist, merging with [[As]], which, as follows from the calcula-
tion algorithm, is optimal. At the same time, the orientation 
[[C]] for xs > 1 continues to exist until it merges with [[A]]. In 

this case, Ngl » 1. For xs < 1, the orientation [[Cs]] deviates 
from [[C]] in the space of Euler angles to the other side, and 
[[C]] disappears for xp smaller in modulus than [[Cs]].

6. Special cases of m3m and m3 crystals

It should be noted that there is a transition zone between the 
regions of parameters at which the dependence of the degree 
of depolarisation on orientation under weak birefringence is 
determined only by the elastic properties of the medium (see 
Section 4.2 of this work and Section 4.2 in [5]) and mainly by 
photoelastic properties (Section 4.1 of this work and Section 
4.1 in [5]). With a relatively small excess of xp over unity and 
a significant difference of xs from it, both effects are signifi-
cant. As follows from Fig. 3a from work [5], for xs > 1, the 
elastic stresses in the disk with the [001] orientation are greater 
than those with the rest of the simplest orientations. An 
increase in the degree of depolarisation in the vicinity of the 
[001] orientation can lead to a change in the optimal orienta-
tion in m3m crystals and, at small values of |xd |, in m3 crys-
tals.

For simplicity, consider an m3m crystal. In the weak bire-
fringence approximation, the degree of depolarisation in a 
thin disk is related to the elastically isotropic one as

g = g iso/Z 2disk (10)

(see Section 5.1 in [3] and Section 4.1 in [5]). Therefore, the 
optimal integral degree of depolarisation for the [011] orienta-
tion will be less than for [001], provided the condition

( ) ( )R Rz
21x hg p  (11)

is met, where
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Z
Z

001
011

disk

disk
z h = ,

h = (1 + n[001])(xs – 1),

in which the elastic and photoelastic parameters of the 
medium are separated. The quantity h was introduced in [3] 
with the opposite sign. Taking into account (32) and (39) 
from [3]
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Figure 5. (Colour online) Angles d[[C]] of deviations of the direction [[Cs]] from the estimate [[C]] (solid curves), as well as normalised integral degrees 
of depolarisation for the orientation [[C]] g'N (dashed curves) in media with n[001] and xs as in (a, b) CaF2 and as in (c) KCl for p = 3 and r0 = 0.8R: 
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The Rg value depends on the probe beam radius. For r0 = R 
and r0 <<  R, respectively, we have
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( ) ,maxR 1small 2x x=g p p^ h,
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2 2x x
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+p p .  (14)

The values of Rz
2  and Rg are shown in Fig. 6. At xp < 0, the 

Rg dependence is shown by dotted lines, since in the presence 
of a critical orientation, none of the compared orientations is 
optimal. Media with h < –3/2 do not exist {see (38) and (93) 
from [3]}.

Figure 7 shows the dependence of the degree of depolari-
sation on the Euler angle b for the orientations [M0N] and 
[MMN] in disks made of model m3m crystals with xp = 1.4 
and xs ~ 2. For these media, R R Rbig small

z
21 1g g  (see Fig. 6). 

For comparison, we present the dependences in the elastically 
isotropic approximation, scaled for the purpose of approxi-
mate coincidence for the [001] orientation. While in the latter 
case, the optimal orientation is [001], in the elastically aniso-
tropic solution for a wide probe beam (Figs 7b and 7c), the 
degree of depolarisation is minimal for the [011] orientation, 
and the [001] orientation may turn out to be the worst. With 
a decrease in the beam radius, the gain from using the [011] 
orientation decreases, and the orientation of the form [MMN] 
becomes optimal, depending on xp and elastic properties, in 
which the coefficient B3 /Zdisk entering into formula (72) from 
[3] is minimal, and the degree of depolarisation for the [001] 
orientation approaches this minimum (Fig. 7a). In general, in 
this range of parameters, the degree of depolarisation depends 
weakly on orientation, but qualitatively depends on the beam 
radius. Therefore, the optimal orientation is difficult to pre-
dict. With a decrease in the elastic anisotropy parameter, the 
considered effect weakens rapidly (Fig. 7c).

Comparing the orientations [001] and [011] for a long rod, 
one can obtain a relation similar to (11), but it will be more 
cumbersome, and the elastic and photoelastic properties of 
the medium in it will not be completely separated. As follows 
from Fig. 3a in [5], for a rod a value similar to Rz, as a rule, is 
less or slightly more than unity; therefore, the fulfilment of 
this inequality in real environments is unlikely. In numerical 
calculations for the parameters in question, the change in the 
optimal orientation also did not occur. Most likely, it will 
take place with a much more significant difference of xs from 
unity. Analysis of Fig. 3a from [5] shows that at xs < 1, the 
degree of depolarisation for the [111] orientation decreases, 
and therefore a dependence similar to that in Fig. 7a is possi-
ble. However, this would require a value of xs ~ 0.2. We have 
not investigated this range of values as uncharacteristic for 
the crystals we know.

A similar behaviour of the degree of depolarisation is pos-
sible in m3 crystals. In a situation similar to Fig. 7a, the gen-
eral orientation ([MNP]) will be optimal. With an increase in 
the probe beam radius, the optimal orientation will be close to 
[011] and shifted towards [[A]].

7. Conclusions

We have studied thermally induced depolarisation of a laser 
beam in cylindrical active elements in the form of a long rod 
and a thin disk made of single cubic syngony crystals of sym-
metry groups 23 and m3 with an anisotropic elastic stiffness 
tensor under volume uniform pumping and lateral heat 
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Figure 6. (Colour online) Quantities included in inequality (11). The 
values used to calculate the dependences in Fig. 7 are marked: xp = 1.4 
(´), h(KCl) = 1.92 ( ) and h(CaF2) = 0.93 (+).
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removal. The degree of thermally induced depolarisation is 
analysed as a function of orientation. The anisotropy of elas-
tic properties affects this dependence. As for other cubic crys-
tals, with weak birefringence the degree of depolarisation 
changes by a characteristic value of the order of tens of per-
cent, and the shape of the dependence on orientation differs 
from the elastically isotropic one in different ways in the disk 
and the rod. The difference in the rod is most pronounced at 
a large value of the modulus of the second parameter of pho-
toelastic anisotropy.

As in other cubic crystals, there are three ranges of values 
of the first parameter of photoelastic anisotropy xp, in which 
elastic anisotropy affects differently the choice of the optimal 
orientation. For |xp| > 1 and in the absence of a critical orien-
tation, the optimal orientations in elastically anisotropic and 
elastically isotropic calculations, as a rule, differ by an amount 
of the order of several degrees. As in the elastically isotropic 
approximation, analytical estimates of the optimal orienta-
tions [[A]], [[B]], and [[B~]] are accurate only for thin probe 
beams. Thus, for crystals of symmetry groups 23 and m3, the 
optimal orientations are shifted relative to both the specific 
orientations and the estimates in the isotropic elasticity 
approximation.

An exception to this rule for cubic crystals of any syngony 
is also considered. The emergence of a new optimal orienta-
tion, which is not specific, is demonstrated for strong anisot-
ropy of the elastic stiffness tensor and weak anisotropy of the 
piezo-optical tensor.

For 0 < xp < 1 and with weak birefringence, the optimal 
orientation is determined by the elastic properties of the 
medium, practically does not depend on the photoelastic 
properties, and is close to either [001] or [011]. In the case of 
strong birefringence, the degree of depolarisation is optimal 
for the orientation [[B]] in the disk and for [[B~]] in the rod in 
the case of a sufficiently large beam radius, which is not the 
case for |xp| > 1. For a large value of the modulus of the sec-
ond parameter of photoelastic anisotropy, the minimum 
degree of depolarisation differs significantly from the elasti-
cally isotropic one.

For xp < 0, a critical orientation may exist for a crystal, 
for which thermally induced depolarisation vanishes in the-
ory. The position of this orientation for the disk coincides 
with the elastically isotropic one, and for the rod it deviates 
from this direction. The angle of deviation, as a rule, is of the 
order of a degree, but it increases sharply at large values of 
both parameters of photoelastic anisotropy in absolute value.
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Appendix

Thermally induced beam distortions  
in laser ceramics made of elastically  

anisotropic cubic crystals

To date, we do not know any analytical solutions to the elas-
ticity problem in elastic anisotropic laser ceramics. The prob-
lem is that in polycrystalline media, both the continuity of the 

strain tensor u (due to the continuity of the medium) and the 
continuity of the stress tensor s (to satisfy the conditions of 
mechanical equilibrium) are required. However, the material 
elasticity equation (6) from [3] relating them contains a piece-
wise constant tensor coefficient s with discontinuities at the 
grain boundaries [16]. We assumed that the solution for 
ceramics is more complex and has variations in both strains 
and stresses within the crystallite. In the course of preliminary 
numerical simulation on an array of two-dimensional square 
granules with centres at the nodes of a square lattice, such a 
variation was demonstrated; however, it was relatively small 
for moderate values of the parameter xs ~ 2. Preliminary cal-
culations show that the presence of this variation increases 
small-scale thermally induced beam distortions in ceramics, 
but the addition to the spatial variation of the permittivity 
tensor [17] is also small. Moreover, since the scale of this addi-
tional variation is smaller than the grain size, its contribution 
to thermally induced beam distortions should be further 
weakened (see also [17]).

Unfortunately, the roughness of the used calculation 
model does not allow us to hope for the reliability of the 
quantitative results obtained. The construction of an analyti-
cal model in this case will also be significantly hampered by 
the statistical dependence of the variations of the elastic and 
photoelastic tensors, as well as by the nonlocality of the elas-
ticity problem.

References
 1. Koechner W. Solid-state Laser Engineering (Berlin: Springer-

Verlag, 1999).
 2. Mezenov A.V., Soms L.N., Stepanov A.I. Termooptika 

tverdotel’nykh lazerov (Thermo-Optics of Solid-State Lasers) 
(Leningrad: Mashinostroenie, 1986).

 3. Vyatkin A.G., Khazanov E.A. Quantum Electron., 50, 114 (2020) 
[ Kvantovaya Elektron., 50, 114 (2020)].

 4. Sirotin Yu.I. Kristallografiya, 1, 708 (1956).
 5. Vyatkin A.G. Quantum Electron., 51, 565 (2021) [ Kvantovaya 

Elektron., 51, 565 (2021)].
 6. Vyatkin A.G., Khazanov E.A. J. Opt. Soc. Am. B, 28, 805 (2011).
 7. Mukhin I.B., Palashov O.V., Khazanov E.A., Ivanov I.A. JETP 

Lett., 81, 90 (2005) [ Pis’ma Zh. Eksp. Teor. Fiz., 81, 120 (2005)].
 8. Nye J.F. Physical Properties of Crystals: Their Representation by 

Tensors and Matrices (Oxford: Clarendon Press, 1957; Moscow: 
Inostrannaya literatura, 1960).

 9. Khazanov E.A. Opt. Lett., 27, 716 (2002).
10. Turley J., Sines G. J. Phys. D: Appl. Phys., 4, 264 (1971).
11. Klopp P., Petrov V., Griebner U., et al. Opt. Lett., 29, 391 (2004).
12. Peters R., Kränkel C., et al. Opt. Express, 15, 7075 (2007).
13. Baer C.R.E., Kränkel C., Saraceno C.J., Heckl O.H., Golling M., 

Peters R., Petermann K., et al. Opt. Lett., 35, 2302 (2010).
14. Aleksandrov V.I., Kitaeva V.F., Osiko V.V., Sobolev N.N., 

Tatarintsev V.M., Chistyi I.L. Kr. Soobshch. Fiz. Fian, (4), 8 
(1976).

15. Nelson D.F., Vedam K., Cook Jr W.R. High Frequency Properties 
of Dielectric Crystals – Piezooptic and Electrooptic Constants 
(Berlin, Heidelberg: Springer-Verlag, 1996).

16. Hill R. Proc. Phys. Soc. A, 65, 349 (1952).
17. Vyatkin A.G., Khazanov E.A. J. Opt. Soc. Am. B, 29, 3307 

(2012). 


