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Abstract.  We analyse modulation instability in fibre with longitu-
dinally varying dispersion and the associated parametric amplifica-
tion and confirm that modulation instability in such fibre is observed 
even in the case of positive dispersion. Highly nonlinear fibre with 
periodic dispersion modulation is shown to be potentially attractive 
as a component of a parametric amplifier with an extended gain 
band due to parametric resonances. Issues related to the influence 
of SRS and SBS on the operation of parametric amplifiers are dis-
cussed.

Keywords: modulation instability, dispersion varying fibre, para-
metric gain, gain band, stimulated Brillouin scattering.

1. Introduction

The study of modulation instability (MI) in a nonlinear sys-
tem with dispersion – Benjamin – Feir instability – has a rather 
long history [1, 2]. In the simplest case, this instability shows 
up as amplification of a weak signal having a frequency ws = 
wp – W, detuned from the frequency of a constant amplitude 
pump signal, wp. As a consequence of four-wave nonlinear 
interaction, this signal undergoes parametric amplification, 
which converts two pump photons into signal (ws = wp – W) 
and idler (wi = wp + W) photons, their frequencies being sym-
metric with respect to the pump frequency. The effect shows 
up as amplitude modulation of light that has constant inten-
sity at the fibre input, and subsequent breaking of the signal 
into a soliton pulse train [3, 4]. For the wave-matching condi-
tion to be fulfilled, the medium should have an anomalous 
group velocity dispersion (GVD) [1 – 4]. Such a parametric 
process can be used for signal amplification in optical fibre 
with an appropriate dispersion [4, 5]. In this connection, the 
study of MI is basic to gaining a detailed understanding of 
parametric amplification.

State-of-the-art communication systems use both ampli-
tude- and phase-encoded signals. Signal amplification is 
ensured by semiconductor optical, erbium-doped fibre, and 
Raman fibre amplifiers. Standard amplifiers introduce both 
amplitude and phase noise into a signal. In optical fibre, 
matching conditions for achieving effective parametric ampli-
fication are determined by its dispersion. The use of commer-
cially available highly nonlinear fibres for parametric signal 
conversion is limited by their narrow gain band and fluctua-
tions in the zero dispersion frequency along the length of the 
fibre [4, 5]. In this work, we propose using modified phase-
matching conditions in optical fibre with longitudinally vary-
ing dispersion [6 – 14], which is expected to allow one to 
improve the performance of such amplifiers and, possibly, 
implement a new signal amplification scheme for testing it 
under real conditions. Fibre amplifiers have an advantage 
over semiconductor ones because they allow for longitudi-
nally distributed amplification and are easy to integrate into 
communication links [15]. We propose modifying the disper-
sion properties of fibre by varying its diameter because a peri-
odic variation in fibre diameter enables quasi-phase matching 
conditions to be fulfilled [7, 14]. The use of fibre with periodi-
cally modulated dispersion allows one to effectively control 
the fission and generation of multisoliton pulses [16]. As 
shown in studies of MI in waveguides having a high delayed 
Kerr nonlinearity, with allowance for pulse self-steepening 
and third-order dispersion [17, 18], the combined effect of a 
delayed nonlinear response and negative nonlinearity disper-
sion leads to an increase in modulation gain coefficient. MI in 
inhomogeneous media, including those with periodic disper-
sion and a nonuniform gain profile, has been the subject of 
extensive studies [19 – 23]. In particular, Finot et al. [19] 
showed that, at a small dispersion modulation, additional MI 
regions emerged as a result of parametric resonances, which 
became suppressed with increasing modulation depth, 
whereas the width of the MI region near the pump frequency 
decreased. Similar results were obtained by Abdullaev et al. 
[20], who also estimated the width of additional parametric 
resonance regions. Aslam et al. [22] obtained analytical solu-
tions for linear growth of instability, which allowed them to 
identify the most unstable modes, accurately calculate the rise 
in modulation amplitude, and find the applicability range of 
the analytical solutions. In addition, perturbation growth was 
shown to be sensitive to the initial perturbation and its phase. 
Rubenchik et al. [23] studied MI in fibre amplifiers. Armaroli 
and Biancalana [24] investigated the effect of fourth-order 
dispersion on MI. Their results show that conventional MI is 
suppressed at large dispersion modulation amplitudes and 
that, at a sufficiently large magnitude of negative fourth-
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order dispersion (near zero second-order dispersion), MI 
sidebands merge and incomplete matching leads to the forma-
tion of instability regions at small detuning. Despite the 
incomplete matching, this is the main instability mechanism 
in such fibre, whereas regions of parametric resonances with 
large detuning have small gain. Guo et al. [25] studied condi-
tions of MI development in fibre with amplification and soli-
ton and breather generation, taking into account higher order 
effects by deriving Lax pairs, using the Darboux transforma-
tion, and constructing Akhmediev and Ma breathers, bound 
solitons, and two-breather solutions. Matera et al. [26] inves-
tigated instability effects due to periodic power variations in 
optical fibre links with losses and amplification. Droques et 
al. [27] experimentally demonstrated growth of MI regions 
and broadening of the instability region by more than 10 THz 
due to quasi-phase matching in fibre with periodic dispersion 
modulation.

The use of periodic modulation was shown to extend the 
range of resonance frequencies and flatten the gain profile 
[13, 14]. Moreover, MI was found in fibre with longitudinally 
decreasing dispersion [20]. As shown by Finot et al. [21], 
large-amplitude dispersion oscillations lead to splitting of MI 
bands into subbands, which can also be described as four-
wave mixing of signals generated in instability bands.

In this paper, we first consider MI in dispersion varying 
fibre, examining the cases of purely periodic modulation and 
modulation in dispersion varying fibre. Next, we present cal-
culated parametric gain and MI spectra for W profile fibre 
and fibre with a varying diameter.

2. MI in dispersion varying fibre

The propagation of a wave in nonlinear optical fibre with lon-
gitudinally varying dispersion is taken to obey the nonlinear 
Schrödinger equation (NLSE) [4]
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Here Dn(z) represents the second and higher orders of disper-
sion; a characterises the nonlinearity of the fibre; u = u(z, t) is 
the optical field envelope; z is a coordinate along the fibre 
axis; t = t – z/ug is the retarded time of the pulse; ug = dw/db is 
group velocity; and b is the propagation constant. Equation 
(1) has a solution for pumping in the form of a plane wave, 
u(z) = Aеxp(iaA2z), where A is taken to be a real number. 
Also, in addition to pumping there is a side spectral (modula-
tion) component such that u(z, t) = A(1 + y), where y  = 
x(z) exp[iy(z)]cos(Wt) with a small amplitude (|x| << A). 
Substituting u(z, t) into the NLSE (1) and retaining only the 
terms of first order in y, we obtain equations for x and y 
(modulation amplitude and phase) in the form [14]

x'' + R 2(z) x(z) – Q(z)x(z) = 0,	
(2)

y' = [W 2D2(z) + Pa]x(z),

where R 2(z) = ¼W 4D2
2(z) + PaW 2D2(z); Q(z) = –D’2(z)/D2(z); 

P = A2 is pump intensity; and W is the difference between the 
sideband and pump frequencies. If the fibre diameter varies 
periodically, we have
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Here D0 is the group velocity dispersion parameter; d1 is the 
dispersion modulation amplitude; f (z) represents the disper-
sion profile of the fibre; k is the dimensionless wavenumber; 
and ld is the dispersion length. In this case, Eqn (2) has peri-
odic coefficients and can be reduced to the Mathieu equation: 
x'' + w0

2 [1 + hcos(kz)]x = 0 [3, 28], where w0
2 = ¼W 4D0

2 + 
PaD0 + d1k/D0 is the square of the spatial dispersion varia-
tion frequency (expressed in inverse square kilometres); w0

2h = 
d1[– 4k + D0 (2D0 + d1)W 4 + 4aD0P ] 4d1k + D0

2(D0 W 4 + 
4aD0P); and f (z) º 1.

Figure 1a shows the variation of the effective frequency 
w2(z) = R2(z) – Q(z) at W = 0, a = 8 km–1 W–1, P = 1 W, D0 = 
–1 ps2 km–1, d1 = 0.25, and k = 4 (solid line) and, for com-
parison, the graph of the function cos(kz/ld + p/2) (dashed 
line). It is seen that the effective frequency approaches the val-
ues given by a + qcos(kz/ld) at a = 0 and q = 1. It follows from 
the theory of Mathieu equations that, at 2w0 = m(k/ld), where 
m is an integer, there are parametric resonance regions [3] 
proportional to the dispersion modulation depth d1, whose 
width decreases with increasing m. For modulation instabil-
ity, phase-matching conditions [1 – 7] taking into account dis-
persion and the nonlinear phase shift should be fulfilled: 
2b(wp) + 2aP – b(wp – W ) – b(wp + W ) = 0. Taylor expanding 
the propagation constant in terms of frequency W, we obtain 
b2 W 2 + 2aP = 0, where b2 = ∂b/∂w2. In the case of dispersion 
modulation, the phase-matching condition can be written in 
the form [14, 19 – 24]

D0W 2 + aP = m(k/ld).	 (3)
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Figure 1.  Square of the effective frequency w2(z) = R2(z) – Q(z) in Eqn (2) 
(a) as a function of coordinate z/ld and (b) as a function of z/ld and modu-
lation perturbation frequency W. In panel a, the solid line represents 
w2(z/ld) and the dashed line shows the function cos(kz/ld + p/2).
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Figure 2 shows W values for which the phase-match-
ing conditions are fulfilled at m from –30 to 30, D0 = 
–12 ps2 km–1, and aP = 2 and 16 km–1. It is worth noting that 
negative w2 values lead to a small-signal gain at frequencies 
wp ± W. It follows from the relation for w2(z) that it is negative 
at low dispersion due to the Q term, as seen in Fig. 1b.

Figure 1b shows, in addition to the frequency – w2 = 
–[R2(z) – Q], the w2 = 0 plane (shown blue). Note that, for 
– w2 > 0, the modulation amplitude x(z) rises, which corre-
sponds to the MI regime. Thus, MI would be expected to be 
observed in the frequency ranges 1 < |W | < 3 THz. At k = 4, 
the solution to equation (2) has a period ldp/2. We define the 
increment of modulation perturbation growth, or the MI 
gain, as

[ ( ) / ( )]ln
g

z x z x 0
2

0 0
= ,	 (4)

where z0 is a sufficiently large propagation distance (in 
numerical calculations, we took z0 = 4ld).

Figure 2 shows the modulation frequencies at which the 
phase-matching condition (3) is fulfilled.

To calculate the increment of modulation perturbation 
growth, we numerically solved Eqns (2) at a given detuning of 
the modulation frequency W and a small amplitude of the ini-
tial perturbation [x(0) = 0.001] over a length 0 < z < 4ld. 
Next, using (4) we calculated the MI increment. If the modu-
lation depth increases, the increment is positive. The fre-
quency ranges where this occurs correspond to the MI region, 
and parametric amplification is possible in them. Figure 3 
shows the MI increment calculated for various pump param-
eters and dispersion profiles with and without dispersion 
modulation. In the case of fibre having anomalous dispersion 
that is constant along its length (Fig. 3a), there are usual 
instability bands in the frequency range – 2.5 < W < 2.5 THz, 
i.e. the gain bandwidth is about 5 THz. A change in disper-
sion law when the dispersion profile is D2(z) = D0sech(z/ld) 
leads to a change in the shape of the MI region, whereas its 
width remains unchanged. Figure 3b shows the MI spectrum 
at this dispersion profile and simultaneous modulation. For 
|W |  > 2.4 THz, additional instability bands emerge at the 
additional frequencies given by (3), and the width of the insta-
bility region increases markedly. Figure 3c shows the instabil-
ity spectrum at a D0 sech(z/ld) dispersion profile and modula-
tion of the form 0.75cos(4z2/ld2 ). In this case, there are also 
additional instability bands, which leads to an increase in the 
total linewidth to almost 12 THz. The position of these addi-

tional bands correlates well with the frequencies in Fig. 2. 
Figure 3d shows the spectrum obtained in the case of chirped 
dispersion modulation with a D0 (sech(uz/ld) + d1 cos(z/ld)2) 
profile. There are also additional instability bands, but they 
overlap, so the spectrum is less jagged. Increasing the pump 
intensity also leads to smoothing of the spectrum (Fig. 3e), 
which becomes ever smoother with increasing pump intensity. 
Thus, if modulated dispersion fibre is used as a parametric 
amplifier, it is reasonable to have fibre with varying (decreas-
ing) dispersion and chirped modulation and use an increased 
pump intensity. It is then expected that the calculated gain 
over a fibre length of four dispersion lengths (in the case of 
fibre with D0 = –12 ps2 km–1 and a pulse duration of 1 ps, 4ld 
corresponds to a fibre length of 330 m) is about 30 dB.

At a low level of pumping, the parametric resonance 
regions are well separated, but with increasing pump intensity 
they overlap to a significant degree, which is essential for 
parametric amplification because amplification at separate 
resonance frequencies leads to distortion of the pulse shape. 
Thus, to ensure the parametric amplification regime, it is nec-
essary to adjust the fibre dispersion profile, the level of pump-
ing, and the modulation depth. Note that, from the shape of 
the frequency dependence of the MI increment, one can assess 
distortion of the pulse shape. It is easy to show that the ampli-
fied signal spectrum Sout(W, z) can be obtained by multiplying 
the spectrum of the signal at the amplifier input by the gain 
spectrum:

( , ) ( ) ( , )exp dS z S z g zout
z

0
W W W= l l; Ey .	 (5)

We plan to present pulse shape distortion calculation results 
in a separate report.

Figure 4 shows MI regions calculated with allowance for 
only second-order dispersion terms (Fig. 4a) and for up to the 
fifth order of dispersion (Fig. 4b). Comparison of these data 
demonstrates that taking into account higher order disper-
sion terms leads to asymmetry of amplification regions 
(Fig. 4b), whereas their width remains essentially unchanged.

3. Calculation of dispersion in W profile fibre

Dispersion in W profile fibre was calculated by a standard 
method [29]. The refractive index profile (RIP) of such fibre is 
shown in Fig. 5. To obtain its dispersion relation, we used 
expressions for the LP mode field in the fibre core (I), trench 
(II), and cladding (III) in the form
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Figure 2.  Modulation frequencies at which phase-matching conditions are fulfilled at D0 = –12 ps2 km–1, k = 4, D0W 2 + 2aP = m(k/ld), and aP = (a) 
2 and (b) 16 km–1; m is the number of the harmonic. The dots represent the harmonics that meet the matching conditions, and the vertical bars 
represent modulation frequencies.
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Figure 3.  MI regions in fibres with (a) constant dispersion, (b) decreasing dispersion, (c, d ) modulated decreasing dispersion, and (e) decreasing 
dispersion and increasing dispersion modulation amplitude. The dispersion profile of the fibre is (a, b) D2(z) = D0(sech(uz/ld) + d1cos(kz/ld)), (c, d) 
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Here e is the wave polarisation vector; Jn is the Bessel func-
tion; In is the modified Bessel function; Kn is the Macdonald 
function of order n; a is the core radius; b is the trench radius; 
and u, q, and w are transverse wavenumbers. Equating the 
fields and the derivatives with respect to radius r across the 
boundaries of regions I – III (Fig. 5b), we obtain a linear sys-
tem of equations in the unknown coefficients A, B, C, and D 
for the fundamental mode with n = 0 [29]:

AJ0(u) = BK0(q) + CI0(q),

BK0(wb/a) + CI0(wb/a) = DK0(qb/a),	
(7)

BK0(wb/a) + CI0(wb/a) = DK0(qb/a),	

–wBK1(wb/a) + wCI1(wb/a) = –qDK1(qb/a).

This homogeneous system of linear equations should have 
zero determinant for the A, B, C, and D amplitudes to be non-
zero. The condition that the determinant of system (7) be zero 
is termed the dispersion equation. Together with the relations 
between the transverse wavenumbers u, q, and w and the 
propagation constant, which have the form

u a K a n ac
2 2 2 2 2 2 2b= - ,

q a K a n at
2 2 2 2 2 2 2b- = - ,	 (8)

w a K a n acl
2 2 2 2 2 2 2b- = - ,

they give four equations which allow the dispersion of the 
fibre to be found. Here nc, nt, and ncl are the refractive indices 
of the core, trench, and cladding, respectively. To calculate 
the dispersion of the fibre, we used the wavelength depen-
dence of the refractive index for GeO2-doped silica, given by 
the Sellmeier formula [29]:

( , ) 1
( )
( )

n X
l Xlg
A XG

GeO
j j

j j2
2 2

2

2 l
l

l
= +

- +

+/ .	 (9)

Here X is the relative GeO2 content, such that 0 < X < 1; 
X = 0 corresponds to undoped SiO2. The parameters of this 
relation are given in Table 1.

To assess the effect of other dopants on the refractive 
index, we used a relation from Bruckner [30]: ( , )n XM M l =

(0, )n XGeO M M2 l k+ . In calculations, we used the following 
coefficients kМ for dopants M: kМ = 1.652 ´ 10–3 for P2O5, 
3.760 ´ 10–4 for B2O3, and – 4.665 ´ 10–3 for F. In calculations 
of the dispersion in the fibre, the wavelength l was varied 
from 0.4 to 2.5 mm in 50-nm steps. Dopant concentrations 
were taken such that the refractive indices at l = 633 nm 
agreed with experimental data. At each value of l, we calcu-
lated the propagation constant b and effective refractive index 
neff = b/K, where K is the wavenumber. 

The results of dispersion calculation by fitting to the poly-
nomial

( )n aeff n
n

n 0

l l=
=

/ 	 (10)

are presented in Fig. 6. The coefficients an (in mm–n) are given 
below:
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Figure 5.  (a) Experimentally measured RIP of a preform at a wavelength of 633 nm and (b) the fibre RIP used in calculations; the RIP difference is 
Dn = n(r) – n0.

Table  1.  Data for calculation of the refractive index of GeO2-doped 
SiO2.

Parameter j = 1 j = 2 j = 3

Aj 0.696166300 0.40794260 0.89747940

Gj 0.806866420 0.71815848 0.85416831

lj /mm 0.068404300 0.11624140 9.89616100

lgj /mm 0.068972606 0.15396605 11.8419310

a0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                           2.622465357

a1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         – 2.325436548

a2  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                         14.430000000

a3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                        –71.971500000

a4  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            266.7710

a5  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            – 609.925

a6  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            – 609.925

a7  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            6326.46

a8  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            – 25968.6

a9  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .                            51688.4

a10  .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   – 44458.8
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Using the wavelength dependence of neff, we calculated the 
GVD parameter (ps nm–1 km–1) [29]:

¶
¶

¶
¶GVD c

n n
3
10eff eff

2

2 4

2

2l
l l

= = .	 (11)

The calculated dispersion agrees with experimentally mea-
sured one [16]. To calculate the dnb/dwn derivatives, we used 
the relation between the wavelength and frequency: w = 2pc/l. 
If frequency is measured in terahertz and the wavelength is 
measured in microns, the speed of light is c = 300 mm ps–1. 
Since b(w) = (w/c)neff ( l), knowing the coefficients an we can 
calculate all the required derivatives. In particular, calcula-
tions yield d2b/dw2 = – 8 ps2 km–1, in reasonable agreement 
with an experimentally determined value of –12.76 ps2 km–1 
[16]. At this dispersion value, the dispersion length is ld = 
62.5 m, which determines the length scale along the fibre axis 
z in the calculation results below. The calculated third-order 
dispersion parameter is d3b/dw3 = 0.0392761 ps3 km–1, which 
is of the same order as an experimentally determined value of 
0.0761 pss3 km–1. Dispersion depends on the fibre core diam-
eter. In particular, it follows from experimental data [16] that 
dispersion rises by 6 ps nm–1 km–1 as the fibre diameter 
increases by 10 mm. These data can be used in calculations of 
the fibre diameter profile to obtain the required dispersion 
profile.

An important process accompanying the propagation of a 
high-power wave in optical fibre is the generation of SBS 

components, which prevents the pump field intensity from 
increasing to above a certain threshold and makes it impossi-
ble to reach large parametric gain coefficients. The threshold 
for SBS gain is determined by its spectrum. To calculate it, it 
is necessary to find the profile of fibre acoustic modes and 
their overlap with the optical mode. The acoustic profile was 
calculated from the dopant concentration in the RIP of the 
fibre using a standard relation [1]. Acoustic profiles were 
determined for the RIP presented in Fig. 7a, using an acoustic 
velocity of 5944 m s–1 for the cladding [4]. Optical and acous-
tic equations were solved by the finite difference method in 
MATLAB in order to find optical and acoustic modes [2]. 
The calculated mode profiles were used in calculating overlap 
integrals of an optical and an acoustic mode to obtain the 
SBS gain spectrum shown in Fig. 7b. Considerable overlap of 
the optical and acoustic modes was only found for acoustic 
modes of order no greater than five (the order of the modes is 
indicated in the SBS gain spectrum). It is seen from Fig. 7b 
that SBS generation involves several acoustic modes 
(L01 – L02, . . .) and, hence, several Stokes waves are gener-
ated. Calculations were performed using a method from 
Refs [31, 32]. The calculation results are presented in Fig. 7.

Estimates of the SBS threshold with allowance for the 
data in Fig. 7b and the effective mode area of the fibre show 
that the threshold is 2 mW for long fibre and 2 W for short 
fibre. This limits the pump power to aP » 0.1 km–1 for long 
fibre and aP » 16 km–1 for short fibre.

The amplification process is accompanied by quantum 
noise, whose behaviour depends on the operation mode of the 
parametric amplifier [33, 34]. In particular, in the case of non-
degenerate operation the excess quantum noise produced by 
the amplifier is 3 dB. In degenerate mode, the signal and idler 
frequencies coincide with the pump frequency (ws = wi = wp), 
and quantum noise causes no excess noise, but there should 
then be phase-sensitive amplification, i.e. amplification of an 
in-phase signal and attenuation of a quadrature signal. In 
such a case, the gain coefficient depends on the phase of the 
signal relative to the phase of the pumping, becoming zero at 
a phase difference of p/2 [33]. Thus, as pointed out previously, 
phase-sensitive parametric amplifiers give no excess quantum 
noise.

In addition to SBS, SRS whose Stokes signal is redshifted 
from the pump frequency by about 10 THz is possible in fibre. 
If an amplifier operates so that the frequency of a signal wave 
coincides with that of the Stokes wave in the case of SRS, SRS 
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Figure 6.  Calculated dispersion of W profile fibre (see Fig. 5b). The 
solid circles represent the calculated effective refractive index and the 
solid line represents the polynomial fit (10).
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and parametric amplification compete with each other, which 
may lead to distortion of the signal. SRS and SBS are charac-
terised by relaxation oscillations [8], which also distort the 
signal. We plan to analyse the dynamics of a parametric 
amplifier with allowance for both SBS and SRS in a future 
study.

To investigate the operation of a parametric amplifier, we 
modelled the propagation of a short pulse on top of a broad 
pump pulse. To this end, we solved the NLSE equation (1) in 
the range –T < t < T with the initial conditions

u(0, t) = 1 – (t/T )6 + asech(t + t0)exp(ij – iWt),

where T = 20 ps; a is the signal pulse amplitude; t0 is the delay 
time; j is the pulse phase; and W is the shift of the pulse fre-
quency with respect to the pump frequency. Figure 8 illus-
trates the spatiotemporal dynamics of the field. In a degener-
ate case, phase-sensitive amplification leads to oscillations of 
the sum of the signal and idler fields because they have identi-
cal frequencies and their phases vary during propagation. 
Note that, without pumping, a soliton pulse propagates with-
out changes in its shape or amplitude (Fig. 8a), and increasing 
the pump intensity increases the pulse amplitude (Fig. 8b). In 
a nondegenerate case, a pulse corresponding to an idler wave 
emerges (Fig. 8c), and interference of the signal and idler 
pulses is seen to become more noticeable with increasing 
pump intensity (Fig. 8d).

4. Conclusions

Our results have been presented on various modulation insta-
bility regimes in W profile fibre. We have calculated dispersion 

characteristics of such fibre, the fundamental LP mode field, 
and the SBS gain spectrum. Taking into account the third and 
fourth orders of dispersion indicates that the frequency depen-
dence of the instability increment becomes asymmetric. In the 
case of dispersion varying periodically along the fibre length, 
there are instability bands in the signal frequency – dispersion 
modulation amplitude plane, and modulation instability is 
possible at both a positive and a negative group velocity disper-
sion. We have demonstrated the presence of a large number of 
parametric resonance regions. It is worth noting that experi-
mental data and theoretical results in a recent paper by Panyaev 
et al. [35] are consistent with the present results. We have dis-
cussed issues related to excess quantum fluctuations and 
pointed out that there are no such fluctuations in the phase-
sensitive amplification regime. The dynamics of fields under 
such conditions, studied numerically by solving the nonlinear 
Schrödinger equation for a degenerate and a nondegenerate 
amplifier, have demonstrated significant pulse shape distortion 
at high pump intensity.
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