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Abstract.  The scheme of a single-photon transistor formed by an 
array of semiconductor single-electron quantum dots in an optical 
resonator is considered. The spectral response of such a transistor 
depends on the Coulomb interaction of the electrons of the array 
with the electron at the measured quantum dot. An approximate 
analytical expression is obtained for the response function of a 
transistor with an arbitrary number of quantum dots. Using a one-
dimensional array (chain) as an example, the dependences of the 
transistor response on the chain period, on the distance to the mea-
sured quantum dot, and on the degree of compensation for Coulomb 
effects are analysed. It is shown that the electron – photon dynamics 
of the transistor is substantially affected by the Förster effect, the 
suppression of which by alternating quantum dots with different 
symmetry of the excited state significantly increases the measure-
ment accuracy.

Keywords: quantum measurement, electrons, photons, microcavi-
ties, quantum dots, Coulomb interaction.

1. Introduction

Detection of individual electrons and determination of their 
spatial position is an important practical problem. Its com­
plexity is associated with the small value of the elementary 
charge, as well as with its high mobility in the crystal. Nev­
ertheless, electrons can be localised inside the semiconductor 
matrix in small volumes, the band structure of which differs 
from the structure of the rest of the crystal due to the presence 
of an impurity. Such regions, which arise naturally in the 
form of nanocrystallites in gallium arsenide (GaAs) and sili­
con germanium (SiGe) solid solutions as a result of the 
Stranski – Krastanov phase transition, or are created using 
external electric fields, are called quantum dots (QDs) [1 – 3]. 
Electrons with the energy less than the jump in the energy of 
the conduction band bottom at the boundary between the 
QD and the crystal cannot leave the QD without giving them 
additional energy to compensate for this difference. Thus, an 
ordered QD nanostructure is created with a controlled num­
ber of electrons, the position of which in space is determined 
with an error specified by the QD size.

One-electron devices are widely used in micro- and nano­
electronics, being, in essence, the last generation of devices, 

the principles of which find a satisfactory description within 
the framework of the classical theory [4, 5]. Their further min­
iaturisation turns out to be impossible due to the indivisibility 
of the elementary charge. In addition, with a decrease in the 
characteristic size of QDs to values of the order of the de 
Broglie wavelength, quantum effects begin to play a decisive 
role in the dynamics of electrons. These effects can be used as 
the basis for a new class of devices that operate in accordance 
with the laws of the quantum world. Such devices, prototypes 
of which already exist and are being tested, include quantum 
bits (qubits), where the electronic states of QDs are used as 
logical states [6 – 10]. Other devices of a new type are highly 
sensitive electric field sensors – a single-electron transistor 
(SET) [11] and a quantum point contact [5, 12], inside which a 
nanoampere current flows, which responds to changes in the 
external field. The evolution of their state is correctly 
described by the equations of quantum mechanics. In most 
QD-based quantum computing schemes, qubits and sensors 
are combined into a structure sometimes called a quantum 
chip [13]. As is known, reliable measurement of the state of a 
qubit is necessary for the successful execution of any quantum 
algorithm [14]. An electron in different logical states of a QD 
qubit has different effects on the current state of the sensor. 
This makes it possible to determine the state of a qubit by the 
magnitude of the current through the adjacent SET.

Possessing a number of unique characteristics, capacitive 
electric field sensors also have several significant disadvan­
tages. Significant difficulties are associated with the fabrica­
tion of the structure itself, which consists of more than ten 
metal electrodes with individual control and complex geome­
try. An equally serious problem is the undesirable interaction 
of the current not only with the measured qubit, but also with 
neighbouring ones. As an alternative version of the measuring 
device, we proposed a model of a single-photon transistor 
(SPT), in which the QD qubit itself plays the role of a sensitive 
element that affects the throughput of the photonic mode of 
the waveguide [15]. In this case, SPT photons (in contrast to 
SET electrons) interact in the near-field mode only with the 
measured qubit. However, the spatial separation of the pho­
tonic (measuring) and electronic (logical) subsystems turns 
out to be impossible here because of the rapid decrease in the 
energy of their interaction with the distance between them. In 
addition, even when the qubit is placed at the antinode of the 
photonic mode, this energy is quite small and comparable 
with the value of the uncontrolled spread of QD frequencies 
and with the rates of dissipative processes, which reduces the 
efficiency of qubit measurement.

In the present paper, we consider a scheme in which an 
increase in the SPT sensitivity is achieved by using not one 
QD, but an ordered array of QDs as a sensor element [16 – 21]. 
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The measured QD qubit is located outside the device and elec­
trostatically interacts with the electrons of the array of QDs 
located at the antinodes of the single-photon field of a wave­
guide or microcavity (MC). This interaction causes Coulomb 
shifts of the transition frequencies in each of the QDs of the 
array, which, in turn, affect the efficiency of the electron-pho­
ton coupling between the QD array and the mode. Thus, the 
presence or absence of an electron in the measured QD indi­
rectly regulates the coefficient of transmission of photons 
through the SPT. Using the exponential-power model for the 
QD potential, we calculated both diagonal and off-diagonal 
matrix elements of the Coulomb interaction of electrons in 
two arbitrary QDs. In the subphoton field approximation, an 
analytical expression is found for the coefficient of transmis­
sion of photons through an array of QDs. It is shown that 
increasing the sensitivity of the SPT by increasing the number 
of QDs is possible only if the resonance condition for the 
transition frequencies is met for most of the QDs and the pho­
ton mode. This means that the choice of the initial parameters 
of the QD, which determine its individual frequency, must 
take into account and compensate the energy shift associated 
with other QDs. This shift depends on the array structure and 
the position of the given QD in it. An electron in the measured 
QD causes an additional shift, which violates the resonance of 
the frequencies of a certain number of QDs and the mode, 
thus changing the spectral response of the SPT. By analysing 
the frequency dependence of the response, it is possible to 
establish the presence or absence of an electron in the mea­
sured QD.

2. Model of an array of one-electron QDs 
interacting with the mode field of a photonic 
molecule in a steady-state pumping regime

The rapid development of solid-state nanophotonics, which 
emerged as an independent discipline in the first decade of the 
21st century, made it possible to conduct systematic experi­
mental studies of quantum optical nanostructures. As a 
result, measuring schemes were developed that allow the 
quantum state of a nanostructure (e.g., the electron popula­
tion of a QD) to be determined by measuring the spectral 
dependence of the photon transmission coefficient through 
an MC that interacts with a QD [22]. One of the main param­
eters on which the accuracy of such a measurement depends is 
the interaction energy of the QD and the MC mode, which 
plays the role of the Rabi frequency of the energy quantum 
oscillations between them. The larger it is, the higher the mea­
surement contrast and the signal-to-noise ratio. Its magnitude 
Wc = – Ec d / & depends on the dipole moment d of the QD and 
the field strength Ec of the MC mode in the region where the 
QDs are located, as well as on their orientation. Both param­
eters have upper limitations related to fixed sizes of subsys­
tems. The field amplitude (more precisely, its rms value Erms = 

E c
2  = /( )V2c c0&w e e , where wс is the MC frequency, e0 is 

the vacuum permittivity, and e is the semiconductor permit­
tivity) is estimated from the condition of normalising the elec­
tric field energy per photon:

dE Vc0
2e ey  = &wc/2

(below we put & º 1). The projection of the matrix element of 
the QD dipole moment operator on the direction of field 
polarisation can be estimated by the formula d » – er, where r 

is the mean QD radius, and е is the electron charge. Recall 
that the frequencies of the subsystems also depend on their 
size. Therefore, an increase in the QD radius in order to 
increase the dipole moment will be accompanied by a decrease 
in the transition frequency, and a decrease in the cavity vol­
ume Vc, which increases the field amplitude, will ultimately 
lead to ‘pushing out’ of all modes from the MC. It is interest­
ing to note that for practically all known hybrid systems of 
the cavity + atom type, the Rabi frequency turns out to be of 
the order of the decay rate of a quantum state. As a rule, it is 
their ratio that indicates the possibility of implementing a 
particular regime and maintaining coherence.

Provided that for a given system the maximum possible 
value of Wc is reached, further optimisation will be associated 
with the suppression of dissipative effects by improving the 
quality of the material and manufacturing technology. How­
ever, there is also an alternative strategy that makes it possi­
ble to strengthen the coupling between the MC photon and 
matter. For this purpose, it is necessary to increase the num­
ber N of ‘atoms’ in the antinodes of the mode, which will lead 
to an increase in the effective Rabi frequency in proportion to 

N . Obviously, such an enhancement will be noticeable only 
for a sufficiently large N: increasing the Rabi frequency by an 
order of magnitude requires putting 100 ‘atoms’ inside the 
MR instead of one. If one of the ’atoms’ is used as a quantum 
bit, then this approach may be unacceptable, since the addi­
tion of other ‘atoms’ will give rise to their unwanted interac­
tion with the qubit. On the other hand, if the structure is used 
as a measuring system (quantum electrometer) that deter­
mines the presence or absence of an electron in a given region, 
then such optimisation looks very useful. Then the array of 
‘atoms’ can be considered as an optically active sensory 
medium (antenna) when tracking the movement of an elec­
tron over short distances.

Let us consider the structure (Fig. 1) formed by two opti­
cal microcavities, MC1 and MC2, between which a coherent 
transfer of photons is possible. Such structures are sometimes 
referred to as photonic molecules (PMs) [23 – 25]. MC1 is used 
as an input port through which photons enter the structure. 
An array of one-electron QDs formed at the antinode of the 
mode field of MC2 (output port) is a quantum nonlinear 
medium that regulates photon transport through the struc­
ture. The detector picks up the emitted photons, which carry 
information about the state of the QD array. Therefore, by 

wL,WL

MC1 MC2
D

J

Figure 1.  PM scheme with spatially separated input ( MC1 ) and output 
( MC2 ) ports ( defects in a lattice of holes in a two-dimensional pho­
tonic crystal ). MC1 and MC2 are coupled due to photon tunnelling at 
a rate J. The QD array is located at the antinode of the MC2 mode. The 
system is pumped by a cw laser radiation with a frequency wL in a sub­
photon stationary regime at a rate WL. The average number of transmit­
ted photons is measured by a photodetector D located near MC2.
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varying the frequency and amplitude of the external field, it is 
possible to study the spectral response of the electron – pho­
ton system. This design provides spatial separation of inci­
dent and transmitted photons, which increases measurement 
accuracy. Depending on the frequency detunings of the PM 
modes and the frequencies of electronic transitions in QDs, 
the process of photon transfer can be implemented in a reso­
nant or dispersive regime.

In this paper, we study a one-dimensional array (chain) of 
QDs, formed inside an extended linear defect in the lattice of 
holes in a two-dimensional photonic crystal. The distance ax 
between adjacent QDs is the same for the entire chain. We 
will assume that the centre of the first QD in the chain is 
aligned with the origin, and the centre of the tested QD has 
the coordinates Lx, Ly. Laser radiation with a frequency wL is 
focused on the MC1 surface. The rate WL of the arrival of 
photons at the structure is determined by the degree of over­
lap of the fields of the MC1 mode and the laser radiation, as 
well as by its power. We will assume that the frequencies wc1 
and wc2 of the MC1 and MC2 modes are close enough for the 
possibility of photon exchange between them. The rate J of 
photon exchange (tunnelling) is proportional to the overlap 
integral of the electromagnetic fields of their modes. Let MC2 
contain N QDs, each having two electronic states (ground 
and excited). The ground state |gk ñ of the QD with number k 
(k = 1 – N ) has the energy egk, and its excited state |ek ñ has 
the energy eek. The set of frequencies wk = eek – egk of elec­
tronic transitions characterises their spectral homogeneity. 
As a model, we choose a two-dimensional QD formed by an 
exponential-power potential [26],

U (x, y) = U0 exp[–(x/rx)2p – (y/ry)2p],	 (1)

where U0 is the QD depth; 2rx( y) is the length of the QD along 
the direction of the x(y) axis; and p is a parameter specifying 
the smoothness of the potential. Effective atomic units (e.a.u.) 
are used as units of measurement: 1 e.a.u. = Ry* = m*Ry/
(me  e2  ) for energy and 1 e.a.u. = a*

B = aB me e/m* for length, 
where Ry =13.6 eV is the Rydberg energy; aB = 0.52´10–10 m 
is the Bohr radius; me is the mass of a free electron; and m* is 
the effective mass of the electron. For gallium arsenide GaAs 
(e = 12 and m* = 0.067me), we have Ry* = 6 meV and a*

B = 
10 nm. Let us choose the parameters of the QD potential (1) 
as follows: rx = 0.7, ry = 0.8, U0 = –22, and p = 5. Then the 
frequency of the transition between the ground and excited 
states of the QD is 9.92 e.a.u.

The energy of the Coulomb interaction of two electrons 
localised in the ground states of QDs with numbers k and m,

V( gk, gm) = 2 ( ) ( )d dr r r r r rk m g k g m k m
2 2Y Y -/yy ,	 (2)

where rk (m) is the radius vector of the electron in the QD num­
ber k (m). The energy of the Coulomb interaction of two elec­
trons, one of which is in the ground state of the QD number k 
and the other in the excited state of the QD number m, is 
expressed as

V(gk, em) = 2 ( ) ( )d dr r r r r rk m g k e m k m
2 2Y Y -/yy .	 (3)

The matrix elements (2) and (3) are diagonal components of 
the Coulomb interaction Hamiltonian and are included in the 

energy levels of the two-electron system. We do not consider 
configurations with double population of one QD, assuming 
that the corresponding addition to the energy of the excited 
level will lead to its pushing out into the continuous spectrum 
of the conduction band (ionisation). Let us calculate the ener­
gies of three possible two-electron configurations: V( gk, gk ) = 
4.22, V( gk, ek ) = 3.22, V( ek, ek ) = 2.99. Each of them is 
higher than the ionisation energy (~2.61). We also neglect the 
tunnel coupling between neighbouring QDs, choosing the 
thickness and height of the barrier separating them suffi­
ciently large. Electrons can make independent resonant tran­
sitions between the states |gk ñ and |ek ñ of the kth QD, 
exchanging an energy quantum with the PM mode with the 
Rabi frequency Wk (k = 1 – N ). In the absence of interaction 
(for example, if the distance between QDs is large compared 
to their size), the spectrum of the electron-photon system is 
represented by a set of Tavis – Cummings polariton modes 
[27]. Its difference from the better-known Jaynes – Cummings 
spectrum, which describes a particular case with one QD, is 
that the states of the electronic subsystem are now represented 
by superpositions of all singly excited states of the QD array. 
When the frequencies of all QDs are equal, only two extreme 
(upper and lower) modes are optically active (the so-called 
‘light’ modes), and the remaining N – 2 modes turn out to be 
‘dark’, not revealing themselves during spectroscopic mea­
surements.

We will assume that no more than one excitation quan­
tum is present in the structure. Then the Hamiltonian of the 
system has the form: 

H = wc1a
†
1a1 + wc2a

†
2a2 + J(a

†
1a2 + a

†
2a1)

	 + 
k

N

1=

/egk | gk ñ á gk| + 
k

N

1=

/eek | ek ñ á ek|

	 + V
k m2

/ ( gk, gm) |gk gm ñ á gk gm |

	 + V
k m2

/ ( gk, em) |gk em ñ á gk em |	
(4)

	 – 
k

N

1=

/Wk(|ek ñ á gk | a2 + | gk ñ á ek | a†
2)

	 + 2WLcos (wLt)(a
†
1 + a1).

Here a1 and a2 are the operators of annihilation of a photon 
in the MC1 and MC2 modes, respectively, and for describing 
the energy exchange between QD and MC2, the rotating wave 
approximation is used, which assumes the fulfilment of the 
conditions wk >> Wk. The dimension of the space of basis vec­
tors is equal to N+3. The vectors

 ç1ñ = çg1,..., gN ñ ç00ñ,     ç2ñ = çg1,..., gN ñ ç10ñ,

 ç3ñ = çg1,..., gN ñ ç01ñ 

describe the vacuum state of the electron – photon system and 
the states corresponding to the presence of one photon in the 
modes of MC1 and MC2, respectively. The remaining vectors 
çk +3ñ = çg1,..., ek ,..., gN ñ ç00ñ (k = 1 – N) describe the excita­
tion of an electron in the kth QD. The state vector

çY ñ = 
k

N

1

3

=

+

/ck|        kñ
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of the system is represented as an expansion in basis vectors 
with time-dependent coefficients ck. The evolution of the state 
vector obeys the Schrödinger equation i¶t çY ñ = H çY ñ with 
the initial condition çY(0)ñ = ç1ñ.

If the laser operates in a cw regime, then by applying the 
transformation

T = exp i t a a a a e eL k k
k

N

1 1 2 2
1

w- + +@ @

=

e o= G/

to the Hamiltonian H, we can eliminate its time dependence. 
In this case, the frequencies of the MC and QD modes are 
shifted by the laser radiation frequency wL. In addition, it is 
necessary to take into account the incoherent processes of 
photon dissipation associated with the uncontrolled energy 
transfer from MC1 and MC2 into the continuum with the 
rates k1 and k2, and the electronic relaxation with the rate gk 
due to the interaction of the kth QD with the phonon envi­
ronment. A rigorous consideration of these phenomena is 
possible only within the framework of the density matrix 
formalism and the Lindblad equation (see below); however, 
an approximate solution, valid for a small probability of the 
system excitation from a vacuum state, can be found using a 
simpler formalism of the Schrödinger equation. To do this, in 
Eqn (4), one should replace wc1(2) ® wc1(2) – i k1(2) and wk ® wk 
– i gk.

Let us choose the value

e(0) = 
k

N

1=

/egk + V
m k2

/ ( gk, gm )

as zero for the energy and introduce the frequency shift

Gk = 
m k!

/ [V(ek, gm) – V(gk, gm)]

of the kth QD. This parameter characterises the non­
equivalence of the Coulomb interaction of an electron in 
the ground and in excited states of the kth QD with the 
electrons of the remaining QDs in the ground state. 
Then the Schrödinger equation, with the above transfor­
mations taken into account, turns out to be identical to 
the system of differential equations for the probability 
amplitudes of the basis vectors in the expansion of the 
state vector:

...

c

c

c
c

cN

1

2

3

4

3

#

+

J

L

K
K
K
K
K
K
KK

N

P

O
O
O
O
O
O
OO

,	 (5)

where dc1(2) = wc1(2) – wL is the detuning of the frequency of 
MC1(2) and dk = wk – wL is the detuning of transitions in a QD 
from the frequency of laser radiation. To calculate Gk (k = 1 
– N  ) for a linear array consisting of identical QDs, it is suffi­
cient to plot the difference DV = V(ek, gm ) – V(gk, gm ), versus 
the distance between the centres of two QDs. Then, knowing 
the configuration of the array (i.e., the coordinates of the cen­
tres of all QDs), it is easy to find all quantities entering Eqn (5).

Let us obtain an approximate solution of system (5) in the 
steady-state regime of subphoton pumping, when c1 » 1 and ¶t ck 
= 0. This regime is achieved in a time tss >> 1/k2, which exceeds the 
characteristic time of photon dissipation. We will be interested in 
the average population án2 ñ = |c3(tss)|2 of the MC2 mode, which 
determines the transmission coefficient, i. e., the number of pho­
tons passing through the SPT from the source to the detector. A 
system of N+3 homogeneous differential equations is reduced to 
an inhomogeneous algebraic system of N+2 equations, solving 
which, we find an expression for the population of the MC2 mode:

án2 ñ »

( ) ( ) ( )i i iJ F F

J F

c c c

L

m m
m

N

1 1 2 2
2

1 1
2

1

2

2 2 2

d k d k d k W

W

- - - - -
=

6 @ /
,	 (6)

where

Fm = iGk k k
k m

N

d g+ -
!

^ h% ,   F = iGk k k
k

N

1

d g+ -
=

^ h%

are products of the QD array resonant denominators. In the 
absence of interaction between the QD and the MC2 mode (Wm 
= 0), the denominator of Eqn (6) has two minima correspond­
ing to the frequencies of the PM modes, which are formed due 
to the tunnelling of photons between MC1 and MC2 at non­
zero J. To achieve the maximum value of the collective Rabi 
frequency, it is necessary to adjust the frequencies of transitions 
of all QDs of the array to resonance with the frequency of one 
of the PM modes. Let us choose as such a mode a symmetric 
PM mode (provided that dc1 » dc2) having a frequency wPM– = 
wc2 – J. The amplitudes of both PM modes in MC2 turn out to 
be 2  times less than the amplitude of the isolated MC2 mode 
due to renormalisation associated with an increase of the sys­
tem optical volume by two times. Therefore, all Rabi frequen­
cies will also be 2  times less than the Wk values. If the detun­
ing of the transition frequency in the kth QD, caused by the 
Coulomb interaction with other QDs, turns out to be equal to 
or greater than the coupling energy of the QD and the mode, 
|Gk| ³ Wk, then the energy exchange between the QD and the 
mode becomes ineffective. Nevertheless, even in this case, the 
QD affects the transport properties of the PM, generating a 
dispersion shift of mode frequency. By setting the parameters 
of the QD potential in such a way that the condition wk = wPM– 

... ... ... ...
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– Gk is satisfied, we compensate for the Coulomb detuning, 
restoring the resonance nature of the interaction.

How should the density of a QD array be chosen? To 
achieve a noticeable increase in its effect on the transmission of 
photons in comparison with a single QD, the number N of QDs 
must satisfy the condition Wc N  ³ k1,2 . This will allow high 
resolution of peaks even at moderate Q-factor of the MC. In 
this case, it is necessary to take into account the finiteness of the 
mode volume, as a result of which an increase in N will inevita­
bly be associated with a decrease in the distance between neigh­
bouring QDs and an increase in the role of Coulomb effects. In 
addition, the dimensions of the MC itself determine its spec­
trum, the increase in volume is accompanied by a decrease in 
the frequencies and amplitudes of the MC mode fields, and in 
this sense it is undesirable. Finally, since QDs are host implan­
tation defects with respect to the MC material [28], they will 
negatively affect its optical properties, deteriorating the mode 
Q-factor. Therefore, the total volume of all QDs in the array 
should be significantly less than the mode volume: NáVa ñ << 
Vc, where áVa ñ is the average volume of the QD.

3. The role of Coulomb effects in the  
steady-state dynamics of a QD array

As we have already mentioned, in compact many-electron sys­
tems, the influence of Coulomb effects on the spectrum and on 
the dynamics of an ensemble of electrons noticeably increases 
with decreasing distance between QDs. In addition to the energy 
level shifts, described by the diagonal components of Hamiltonian 
(4) and caused by the difference in the distributions of the elec­
tron density of the QD in its ground and excited states, when the 
QDs approach to a distance of the order of their radius, off-diag­
onal Coulomb matrix elements begin to play a significant role. 
They determine the rates of dynamic processes that cause transi­
tions between stationary states of the system. Coherent resonant 
transfer of excitation between QDs without moving an electron 
(exciton) is considered the most important of them. This phe­
nomenon is known as the Förster effect [29 – 31]. The rate of this 
process is determined by the matrix element

V F
km  = 2 yy drkdrmY *g(rk)Y *e(rm)Yg(rm)

	 ´ Ye(rk) /|rk – rm|,	 (7)

and the corresponding Hamiltonian has the form 

HF = V F
km

k m!

/ |gkemñ áek gm| + h.c.	 (8)

Thus, the Förster dynamics is represented by two synchronous 
optical transitions |ekñ ®¬ |gkñ in the kth QD and |gmñ ®¬ |em ñ 
in the mth QD, occurring in opposite directions. This process 
will be effective only if the transition frequencies in both QDs 
are close, i. e., when the condition of their resonance is satis­
fied, |wk – wm| << |V F

km|. Another Coulomb process, the 
energy of which is expressed by matrix elements of the form

V ( , )
km
ge g  = 2 yy drkdrmY *g(rk)Y *g(rm)Ye(rk)

	 ´ Yg(rm) /|rk – rm|,	 (9)

is the transition from the excited state to the ground state of 
one QD, induced by the field of an electron in another QD. 
The corresponding Hamiltonian should be supplemented 
with a Hermitian-conjugate expression describing the inverse 
process:

H ( , )
nondiag
ge g  = V ( , )

km
ge g

k m!

/ |gk gmñ áek gm|+ h.c.	 (10)

In contrast to the Förster resonant energy exchange, in this 
process the energy is not conserved, and, therefore, it is vir­
tual, leading only to a small shift of the QD frequencies, 
|V ( , )

km
ge g /wk(m)| << 1. Dependences of the Stark frequency shift 

DV and the Förster energy VF on the distance between QDs 
with the parameters indicated above are shown in Fig. 2. It is 
seen that the moduli of these energies rapidly increase with 
decreasing distance L between QDs.

Another feature of the matrix elements is associated with 
their angular dependences. If the distance between the QDs is 
fixed and the angles j1 and j2 of the QD rotations around the 
axes passing through their centres vary, then the Coulomb 
energies will also change. It is easy to see (Fig. 3) that upon 
rotation through the angle j2 = p /2 (i. e., upon transformation 
of the wave function of the excited state px of QD 2 into py), the 
G2 shift becomes negative, and the Förster energy becomes 
zero. Therefore, in this way it is possible to regulate their influ­
ence on the dynamics of the system at a fixed number of QDs 
and the distance between their centres. In particular, alternat­
ing the excited px and py orbitals of neighbouring QDs in a one-
dimensional chain, one can largely suppress the Förster effect.

What is the role of Coulomb effects in the steady-state 
dynamics of PM and QD array? To answer this question, a 
deeper study is needed, which requires the use of the density 
matrix formalism. The dynamics of an electron – photon sys­
tem is described by the Lindblad equation, the solution of 
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which gives the time dependence of its density matrix r for a 
given initial state r(0):

d
d

t
r

 = – i[H + HF, r] + 
k 1

2

=

/kkD(ak) + 
k

N

1=

/ gk D(|gk ñ áek|)

	  + 
k

N

1=

/gd k D(|ekñáek| – |gk ñá gk|),	 (11)

where gd k is the rate of electron dephasing in the kth QD. 
Dissipative photonic and electronic processes are modelled by 
the Lindblad operators D(O ) = OrO† – [O†O, r]/2. Let us 
find a steady-state solution of Eqn (11) for a linear structure 
of four one-electron QDs in a vacuum state, assuming that 
the laser exposure time exceeds the relaxation time of the 
system.

We start with the case when the excited orbitals of all QDs 
are oriented along the structure axis (configuration 
px – px – px – px). For the convenience of comparing the exact 
solution with the analytical approximation (6), both solutions 
are presented in Fig. 4. As we have already found out, the 
Coulomb interaction causes shifts of the transition frequen­
cies in the QD, depending on its position in the structure. If 
the distance between neighbouring QDs is comparable to 
their size, then the shifts bring the QD out of resonance with 
the PM mode, shifting the frequency of the peak. It is logical 
to assume that an increase in the distance will lead to a weak­
ening of the Coulomb interaction and a gradual restoration of 
the resonance (doublet) shape of the spectral curve. The 
results of calculations shown in Fig. 4a fully confirm this 
assumption: with increasing distance ax, the doublet structure 
of the response is restored, and with a significant distance 
between QDs (ax > 80 nm), it tends to the dependence for a 
PM with noninteracting QDs. Comparison of the exact 
numerical solution found with allowance for off-diagonal 
Coulomb effects and QD dephasing with the approximate 
solution (6) indicates some difference in the frequencies and 
widths of the resonance peaks. To understand which of the 
effects not taken into account in equation (6) has the greatest 

influence on the spectral curve, we use the result shown in 
Fig. 3. When one of the QDs is rotated by an angle p /2 around 
its axis, the Förster energy becomes zero. If the chain is 
formed by alternating QDs with excited px and py orbitals 
(configuration px –py – px – py), then the Förster energy exch­
ange between neighbouring QDs will be suppressed. In this 
case, the calculation results demonstrate a good agreement 
between the resonance frequencies for the exact and approxi­
mate solutions, indicating that the Förster interaction is the 
main source of frequency shifts in the homogeneous chain. 
Dephasing caused by stochastic fluctuations of the transition 
frequencies in QDs and not taken into account in the approx­
imate approach of the Schrödinger equation leads to addi­
tional broadening of the peaks. At the same time, for an inho­
mogeneous QD chain, with an increase in the distance ax, two 
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more resonance peaks appear, which are not present in the 
dependences for a homogeneous QD chain (Fig. 4b). Since 
they are present both on the analytical and on the numeri­
cally calculated curve, their origin is unambiguously associ­
ated with the diagonal matrix elements of the Coulomb inter­
action.

Using the point charge approximation, we calculate the 
values of Gk at each QD. For a homogeneous chain, we obtain 
the set G1 = G4 » r2

p /(2a3
x), G2 = G3 » r2

p /a3
x (in e.a.u., taking 

into account the interaction of only neighbouring QDs). The 
set for a nonuniform chain looks like this: G1 » r2

p /(2a3
x), G2 » 

– r2
p /(2a3

x), G3 » r2
p /a3

x, and G4 » – r2
p /(4a3

x), indicating lower 
shear symmetry compared to a homogeneous chain. The ana­
lytical values are in good agreement with those found numer­
ically (compare with Fig. 2) if we put rp » rx /2 = 0.35 (the 
coordinate of the maximum of the function | Ye(x, y)|2 on the 
x axis). In the case ax = 8, we obtain G1(4) = 0.0012, G2(3) = 
0.0025 for a homogeneous chain and G1 = 0.0012, G2 = 
– 0.0011, G3 = 0.0025, G4 = – 0.0006 for an inhomogeneous 
one. Since the energy parameters in Fig. 4 are taken in units of 
frequency wс1 of MC1, the values of Gk must be converted 
from effective atomic units to the indicated units by multiply­
ing by the ratio wс1/1 e.a.u. » 10. It is seen that these values 
satisfy the conditions |Gk| ³ Wk, and this indicates that the 
system is in the resonant-dispersive regime, in which the elec­
tron – photon spectrum differs significantly from the reso­
nance spectrum of the Tavis – Cummings model with two 
‘bright’ states. However, only for an inhomogeneous chain, 
all four polariton modes have an optically active component 
due to the asymmetry of the shifts. In the next section, we will 
define the contrast of the PM measurement and study how 
the response and contrast depend on the distance to the QD 
under test.

4. Spectral response of a PM  
with a one-dimensional array of QDs

The above calculations indicate a significant influence of 
Coulomb effects inside the QD chain on the population of the 
PM transport mode, which is proportional to the average 
number of photons at the exit from the structure. The same 
feature makes it possible to determine the amount of charge 
in a QD located outside the MC and, therefore, optically inac­
tive. The influence of the measured QD with number s on the 
kth QD of the array is expressed in an additional shift of its 
frequency by dVks, where dVks = V(ek, gs) – V(gk, gs). In turn, 
these shifts in the QD frequencies cause a shift in the photon 
population peak, which can be easily found by comparing 
with the response of the structure in the absence of the mea­
sured QD (thick curve in Fig. 5). We define the measurement 
contrast as follows:

S = max(|án ( )2
0  ñ – án ( )2

1  ñ|),	 (12)

where án ( )2
0  ñ is the average number of photons if there are no 

electrons in the measured QD, and án ( )2
1  ñ is the average num­

ber of photons if there is one electron in the QD. The maxi­
mum value of the mode population difference (12) is attained 
at the frequency of the spectral peak of the PM, which does 
not interact with the measured QD. After multiplying by the 
mode frequency, the quantity S will have the dimension of 
energy, which is convenient for estimating the power of the 
flux of transmitted photons, which is important for choosing 
the distance from the PM to the detector. The answer to the 

question of what position of the measured QD relative to the 
structure will be optimal is far from obvious. On the one 
hand, the closer the QD to a certain part of the chain, the 
more active its interaction with the electrons of several nearby 
QDs in comparison with other (more distant) QDs. This 
makes it possible to further suppress the electron – photon 
interaction between the mode and such QDs and thereby 
change the PM response. On the other hand, a QD located at 
a distance exceeding the characteristic size of the structure 
equally (but with much lower energy) interacts with all QDs 
of the array. Thus, the first configuration leads to almost 
complete optical blockade of the group of QDs, slightly 
affecting the rest of the array. For the second configuration, 
the frequency shifts in all QDs are approximately the same, 
but small. Which of the options turns out to be more effective 
will depend on the rest of the system parameters. The enhance­
ment of the Coulomb interaction between the structure and 
the outer QD, as well as the suppression of electron – electron 
correlations in the structure, should be considered as natural 
steps towards optimising the response. This is achieved by 
external electrostatic control of the QD potential or by engi­
neering the growth process of QD crystallites in order to 
select such chain parameters, at which all structural shifts of 
QD frequencies are exactly compensated by internal Coulomb 
shifts. In this case, the resonant character of the interaction 
with the PM mode is restored. Another important optimisa­
tion step is the suppression of the Förster exchange, which 
destroys the doublet structure of the response, by alternating 
the excited states of QDs with different symmetry (Fig. 6).

Figure 7 shows the dependences of the contrast S on the 
position Lx of the measured QD along the chain for two val­
ues of Ly at different degrees of compensation for Coulomb 
effects. For a structure without compensation, the contrast 
decreases rather rapidly with increasing distance Ly, in accor­
dance with the dependences of the spectral response shown in 
Fig. 5. Whereas at Ly = 4 the contrast level is comparable to 
the level of the signal itself, at Ly = 8 it sharply decreases, 
making the described method of indirect measurement inef­
fective. Compensation of frequency shifts while maintaining 
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Figure 5.  Spectral responses of a PM containing a chain of four QDs 
with a period of ax = 4 for two positions of the measured QD centre 
( dispersion regime ). The inset shows the geometry of the measuring 
circuit. The vertical dashed line marks the position of an even PM mode 
without a QD chain. The structure parameters are the same as for Fig. 4.
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the Förster interaction significantly improves the efficiency of 
the procedure for the region near the chain (1 < Ly < 6); how­
ever, when the QD is vertically removed by a distance of Ly > 
8, the contrast again decreases to zero. Note the presence of 
four local maxima for the curve with Ly = 4, which are absent 
in analogous curves with uncompensated and fully compen­
sated electron interaction within the structure. Therefore, 
they are associated with the Förster effect. As we already 
know, the compensation of the latter requires splitting the 
QD chain into two sublattices differing in the orientation of 
the excited state orbitals (for example, px for odd QDs and py 
for even QD numbers). Full compensation of the Coulomb 

interaction makes it possible to slow down the decrease in 
contrast with an increase in the vertical displacement of the 
QD and to increase the resolution. This makes it possible to 
place a qubit at a greater distance than for a structure without 
compensation.

To construct the coordinate dependence of the contrast 
S(Lx, Ly) in the half-plane, we use Eqn (6), the application of 
which yields the correct result for QD chains with suppressed 
Förster interaction and with low rates of QD dephasing, 
which is mainly associated with acoustic phonons. The obta­
ined two-dimensional picture (Fig. 8) reflects the general 
trend of a smooth decrease in contrast with the distance of the 
measured QD from the chain. Its location in the region 0 < 
Lx < 4ax guarantees reliable measurement at significant verti­
cal distances. On the contrary, placing the measured QD on 
the x axis leads to a rapid decrease in contrast already at a 
small distance from the boundaries of the chain.

The results presented in Figs 7 and 8 allow formulating 
general recommendations for optimising the measurement. It 
is desirable to position the tested object so that the distance to 
all QDs of the chain is approximately the same (the area in 
Fig. 8, bounded by vertical dashed lines). To maintain high 
contrast values upon moving QDs at a large distance (Ly > 
10), it is necessary to compensate the Coulomb frequency 
shifts of optical transitions in the QD chain and to minimise 
the Förster interaction between them. Compensation can be 
implemented by properly choosing the shape of the QD 
potential and the distance between adjacent QDs, depending 
on their position in the array. It does not require additional 
infrastructure (a set of gate electrodes). In other words, filling 
all the QDs of the array with electrons should restore the reso­
nance of the QD and mode frequencies due to mutual com­
pensation of structural and Coulomb shifts equal in magni­
tude but opposite in sign. As you might guess, the values of 
the Coulomb shifts will be larger for QDs located in the cen­
tral region of the array; therefore, both the distance to neigh­
bouring QDs and the depths of their potentials should be 
greater. However, a structure exists that does not require 
additional engineering of QD potentials to implement this 
approach. These are QDs evenly spaced on a circle. In this 
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case, due to the equivalence of the Hamiltonians for each QD, 
their frequency shifts due to the electron-electron interaction 
will be similar. The electron in the measured QD on the axial 
axis passing through the centre of the circle also equally 
affects each of the QDs of the annular array. This should 
facilitate a synchronous exit from resonance with the mode of 
all QDs in the array when this QD is populated, which will be 
accompanied by a sharp change in the spectral response (res­
toration of the ‘empty’ PM spectrum). As a final remark, let 
us point out the need to maintain the subphoton regime con­
ditions, in which the average number of photons of the mode 
does not exceed unity [32].

5. Conclusions

In this paper, we analyse the possibility of using a one-photon 
scheme for spectroscopic monitoring of the state of charged 
nano-objects. A method is proposed for optical measurement 
of the population of QDs located at a considerable distance 
from the device. Our method is consistent with the quantum 
measurement scheme using the Jaynes – Cummings effect, 
supplementing it with some new details. In particular, we 
prove that it is necessary to correctly take into account the 
Coulomb interaction, when, in addition to the Stark (diago­
nal) shifts of the QD frequencies, the Hamiltonian also con­
tains off-diagonal components describing the Förster effect. 
The PM response (the average number of photons at the exit 
from the structure) depends on the observance of the condi­
tions for the resonance of the QD array and the PM transport 
mode. An increase in the number of QDs leads to an increase 
in the energy of collective electron-photon interaction, restor­
ing the resolution of spectral lines for PM with a low Q-factor. 
However, if the density of QDs in the array is high, then the 
Stark shifts and the Förster effect suppress the resonant 
exchange of a quantum between the QD and the mode, trans­
ferring the OPT to the dispersive regime, which is character­
ised by low sensitivity. Thus, there are ways to optimise the 
measurement process associated with structural engineering. 
In particular, the individual choice of the QD potentials and 
the array geometry, at which the resonance of the frequencies 
of all QDs and the PM mode is restored, provides the maxi­
mum measurement contrast.
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