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Abstract.  Using machine-learning methods based on self-organis-
ing Kohonen maps, the results of numerical simulation of the accel-
eration of electrons during the interaction of high-power laser radi-
ation with plasma are analysed and classified. The particle-in-cell 
(PIC) method is used to simulate the interaction in a wide range of 
parameters (laser intensity and plasma concentration). For each set 
of parameters, the spectrum of accelerated electrons is found, based 
on which the charge, average energy, and relative energy spread of 
accelerated electrons are calculated. Using the obtained values as 
input parameters of the map, the classification of various accelera-
tion regimes is performed. The developed scheme can be used to 
identify the optimal acceleration regimes under more realistic con-
ditions, considering a larger number of parameters.

Keywords: laser plasma, plasma acceleration methods, particle-in-
cell numerical simulation, machine-learning methods, neural net-
works, self-organising Kohonen maps.

1. Introduction

Due to the rapid development of laser technologies, the inter-
action of high-power laser radiation with matter has been 
intensely studied in recent years. One of the interesting and 
successfully investigated processes accompanying this inter-
action is the laser-plasma acceleration of electrons [1, 2]. In 
experiments, the energy of electrons accelerated in laser 
plasma exceeded 8 GeV [3], which is only several times less 
than the maximum energy attainable in modern linear accel-
erators [4]. However, due to the ultrahigh gradient of laser-
plasma acceleration, this energy is acquired over a length of 
several tens of centimetres, whereas in a standard linear accel-
erator, an energy of 8 GeV is achieved over a length of about 
1  km. Thus, the development of laser-plasma technologies 
can make accelerators relatively compact. This can revolutio-
nise various fields of science and technology: from high-
energy physics, where particle colliders are the main research 
tool, to medicine and industry, where compact high-bright-
ness X-ray sources are needed, based on electron accelerators. 
Currently, there are large international projects devoted to 
the study of laser-plasma acceleration [5, 6].

Laser-plasma acceleration is a rather complex process, 
and numerical simulation is a ‘workhorse’ both for the analy-
sis and planning of experiments and for testing theoretical 
models, especially in the domains of parameters, where labo-
ratory research is not possible at the present stage. Moreover, 
many interesting effects and regimes of particle acceleration 
in laser plasma were first discovered and investigated using 
numerical simulations, for example, a strongly nonlinear 
acceleration regime (bubble regime) [7], betatron emission [8], 
absolute phase effects for ultrashort laser pulses [9, 10], accel-
eration in a hollow plasma channel [11], etc. It should be 
noted that full-scale numerical modelling, especially in the 
case of multi-parameter modelling, generates a huge amount 
of data. Their analysis and interpretation is a rather laborious 
and controversial process that requires a significant amount 
of time. 

In recent years, machine learning has been used in many 
areas of human activity [12 – 14]. Moreover, the scope of its 
application is permanently expanding, since the use of digital 
technologies leads to the accumulation of large amounts of 
data, the processing and analysis of which requires consider-
able effort. In particular, machine learning methods allow 
automating the process of analysing the results of numerical 
modelling and making the analysis more objective (to reduce 
the impact of the human factor on the preparation of the 
analysis results) [15 – 17]. Many methods have now been 
developed, the main of them being such algorithms as k-near-
est neighbours [18], random forest [19], fully connected neural 
network [20]), etc. It should be noted that the very idea of 
using machine learning for the study of laser-plasma interac-
tion is not new, although work in this direction has begun 
quite recently. In particular, such methods were discussed for 
planning experiments and finding their optimal scheme [21], 
for choosing the best theoretical model and refining the 
experimental parameters that cannot be measured directly 
[22], for automating experiments on laser-plasma accelera-
tion, as well as for controlling them [23], etc. 

In this paper, we consider the application of one of the 
machine learning methods for processing the results of 
numerical simulation of laser-plasma acceleration of elec-
trons and identifying various regimes of acceleration. Large 
series of numerical experiments, as a rule, yield a large amount 
of data obtained in wide ranges of laser-plasma parameters. 
Revealing different regimes of interaction and constructing a 
‘modelling parameters – interaction regime’ correspondence 
map is an extremely important and sophisticated task, which 
is now usually solved manually. This problem is especially 
complicated when the dimension of the parameter space is 
more than three. In this case, the results are very difficult to 
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visualise and, therefore, it is difficult to classify the possible 
regimes of interaction. To automate this task, we propose to 
use one-dimensional self-organising Kohonen maps.

2. Description of the map algorithm 

The self-organising Kohonen map belongs to the class of 
unsupervised neural networks [24]. Its operation is based on 
one of the methods of projecting a multidimensional space 
onto a space with a lower dimension. For this purpose, the 
rules for training a neuron are formulated, thanks to which it 
receives information about its location. First, the number of 
neurons (nodes) of the network is specified, which is usually 
less than the number of input vectors xi representing the ana-
lysed data. The neurons themselves, in addition to their posi-
tion on the map (determined by the vector rj), are also charac-
terised by the weight vector mj with the same dimension as the 
input data. Before starting work, the map must be initialised, 
for example, by setting weights in the form of random vari-
ables.

The self-organisation process of the Kohonen map is an 
iterative algorithm. At each step, a vector is randomly selected 
from the input data. After calculating the distance between 
two vectors |xi – mj| the vector of the ‘winning neuron’ is 
selected closest to the input vector xi. Neurons are trained by 
adjusting the weights of the winning neuron and its neigh-
bours. As a result of the correction, the distance between the 
input vector and the vectors of the winner neuron and its 

neighbours decreases. In the simplest case, the process of 
adjusting the weights can be written as follows: 

mj(t + 1) = mj(t) + hc j(t)|xi(t) – mj(t)|,	 (1)

where hc j(t) is the so-called neighbourhood function, which in 
our case is specified in the form
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a and s are some constants; t is the effective time indicating 
the iteration steps; and Q(x) is the Heaviside function [Q(x) = 
0 for x < 0 and 1 for x ³ 0]. The neighbourhood function 
determines both the effective number of neighbours of the 
winning neuron involved in adjusting the weights and the 
learning rate. 

Figure 1 illustrates the operation of a neural network 
based on the Kohonen map for simplest mathematical distri-
butions. An ordered set of points describing various shapes 
(spiral, sinusoid, circle) is selected as input vectors. Input vec-
tors are marked in blue. The initial values of the components 
of the vectors of the network are selected at random from the 

Figure 1.  (Colour online) Illustration of the operation of the algorithm based on the Kohonen map for the simplest mathematical distributions. 
Blue dots correspond to input vectors. The distribution of points corresponding to the vectors of neurons in the network is marked in red, and their 
initial values are randomly selected from the set of input data.
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set of input data. The distribution of neurons in the network 
is shown by red dots. It can be seen that at first the neurons of 
the network are mixed up. As a result of training, they are 
ordered and repeat the shape fed to the input of the network. 

One of the disadvantages of the algorithm is that the result 
depends on the initial distribution of the network. Therefore, 
in the learning process, the map may be constructed incor-
rectly. Moreover, the probability of errors increases if the 
input data has a complex structure. To identify cases of erro-
neous approximation, a unified distance matrix (u-matrix) 
was used. It displays the structure of the resulting clusters by 
visualising the distance between them. A cluster is a group of 
vectors, the distance between which within this group is less 
than the distance to neighbouring groups. To find the matrix, 
the distance between the weight vector of the neuron in the 
network and the weight vectors of its nearest neighbours is 
calculated. The calculated values are used to determine the 
colour that will be used to mark the matrix element. If the 
map was built correctly, then there will be no sharp ‘jumps’ of 
colour over the matrix, that is, the colours, and hence the dis-
tances between neighbouring neurons, will change smoothly. 
Thus, the visualised matrix can be used to clarify whether the 
map is working correctly. If the map was built incorrectly, 
then you can repeat the calculations with a new set of neuron 
weights, which are chosen randomly.

Figure 2 shows examples of correct and incorrect approx-
imations with the display of the distance matrix. To the right 
of the matrix there is a colour scale (Figs 2b and 2d), which 
shows the correspondence between the colour of a point of 
the matrix and the distance to another point in the network. 
Note that with correct approximation (Figs 2a and 2b), the 
distance between adjacent points smoothly increases, only 
zeros are obtained along the diagonal (since the distance from 
a point to itself is equal to zero), and the points farthest from 

each other on the curve and on the matrix are coloured appro-
priately. For an erroneous approximation (Figs 2c and 2d), 
abrupt colour changes are observed. Obviously, such transi-
tions characterise the incorrect construction of the map, since 
the distance between adjacent points cannot change abruptly. 
Therefore, we can say that the map got confused during the 
learning process. 

3. Analysis of the simulation results 
of laser-plasma acceleration of electrons 

The process of electron acceleration in a laser plasma occurs 
as follows. The laser pulse propagating in the plasma forms 
behind itself a region almost free of plasma electrons. Plasma 
ions, due to their large mass in comparison with electrons, can 
be considered immobile at times of the order of the laser pulse 
duration. Thus, the region that forms behind the laser pulse 
and moves behind it at a speed close to the speed of light has 
a large positive charge. Part of the plasma electrons can be 
captured in this region and accelerated to high energy, form-
ing bunches of accelerated electrons. 

Using the QUILL PIC code [25], a three-dimensional 
numerical simulation of the interaction of a laser pulse with a 
plasma was carried out over a wide range of parameters. The 
linearly polarised laser pulse propagated along the x axis and 
had a Gaussian profile:

( , )
2

,expa t a
l
x

l
y z

r 0
20

2 2 2

x
2 2= = - -

+

=

f p 	 (3)

where a0 = eE0/(mcw) is the normalised amplitude of the laser 
pulse; E0 is the maximum value of the pulse electric field; lx/c 
is the pulse duration; l^ is the width of the transverse distribu-
tion of the pulse field; w = 2pc/l and l are the frequency and 
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Figure 2.  (Colour online) Illustration of (a, b) the correct and (c, d) incorrect operation of the algorithm based on the Kohonen map and diagnostics 
of the operation using a unified distance matrix. In Figs 2a and 2c the blue points correspond to the input vectors, and the distribution of the points 
corresponding to the vectors of the neurons of the network is marked in red. Figures 2b and 2d show a unified matrix of distances, the colour shows 
the distance between neurons of the corresponding numbers. Blue is the shortest distance and red is the longest.
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wavelength of laser radiation; e and m are the charge and 
mass of the electron; and c is the speed of light. The laser field 
was polarised along the y axis. The following parameters were 
used in the calculations: lx/c = 15 fs, l^ = 2.5 mm, l = 0.9 mm. 
The normalised pulse amplitude a0 varied from 1 to 8 with a 
step of 1, and the plasma concentration n varied from 0.017nc 
to 0.241nc with a step of 0.014nc, where nc = 1.38 ́  1021 cm–3 
is the critical plasma concentration. Thus, the simulation was 
performed for 8 ́  17 = 136 sets of laser-plasma parameters. 
The size of the computational domain is 24l ́  24l ́  30l. 
During the simulation, the computational domain itself 
moved at the speed of light, accompanying the laser pulse.

For convenience, Fig. 3 shows the simulation results for 
only 64 sets of laser-plasma parameters (the plasma concen-
tration varied from 0.017nc to 0.115nc with a step of 0.014nc) 
60 fs after the onset of interaction. The interaction process is 
seen to vary greatly depending on the values of the parame-
ters. At some values, no beam of accelerated electrons is 
formed, whereas at other values a dense bunch of high-energy 

electrons is produced. In some cases, the laser pulse breaks 
apart and several electron bunches are formed. At small val-
ues of a0, instead of a large single region with a positive 
charge, a periodic structure (a ‘wake’ wave corresponding to 
the quasi-linear interaction regime) is formed, which does not 
capture electrons. In the numerical simulation, the size of the 
plasma gap, where the acceleration occurred, was 21 mm, that 
is, the interaction time of the laser pulse with the plasma is 
70 fs. 

The bulk of the spectrum (energy distribution) of elec-
trons emitted from the plasma are cold electrons (with a max-
imum near zero energy). In order to take into account only 
high-energy electrons when processing the simulation results, 
we, as in the laboratory experiment, took into account the 
motion of electrons in the vacuum gap from the plasma to the 
detector. When moving in such a gap, most of the electrons 
with low energy and high transverse momenta lag behind 
high-energy electrons propagating at small angles to the x 
axis and leave through the side surfaces. Thus, only a small 
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Figure 3.  (Colour online) Distributions of electron density (blue) and laser intensity (red) in the xy plane, obtained using PIC modelling, for 64 (of 
136) sets of laser-plasma parameters 60 fs after the onset of interaction. A brighter colour corresponds to a higher electron density (laser intensity) 
and vice versa. In the calculations, we used the parameters lx/c = 15 fs, l^ = 2.5 mm, and l = 0.9 mm. The normalised laser pulse amplitude a0 varied 
from 1 (bottom row) to 8 with a step of 1, and the plasma concentration from 0.017nc (left column) to 0.115nc with a step of 0.014nc. The red line 
frames the area corresponding to the optimal laser-plasma parameters (see Fig. 5 below).
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fraction of the low-energy electrons enters the detector. In the 
numerical simulation, the time of their motion in the vacuum 
gap was 100 fs. Figure 4 shows the spectra of electrons reach-
ing the detector for the same parameters as in Fig. 3. It is seen 
that the spectra also strongly depend on the laser-plasma 
parameters. For some values of these parameters, accelerated 
electrons are absent. For other values, the number of acceler-
ated electrons is large. In some cases, complex spectra with 
several maxima are formed. 

The spectra of accelerated electrons f (e) found by simula-
tion were used to calculate the bunch charge Q, the average 
energy áeñ, and the relative energy spread De of electrons in 
the bunch: 
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In turn, the calculated values of Q, áeñ, and De were used 
as input parameters of the Kohonen map in order to deter-
mine the interaction regimes. The input parameters were nor-
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Figure 4.  (Colour online) Spectra (energy distribution) of electrons accelerated by a laser pulse in a plasma. The length of the plasma gap was 
21 mm, and the length of the vacuum gap was 30 mm. The rest of the parameters are the same as in Fig. 3. The red line frames the spectral region 
corresponding to the optimal laser-plasma parameters (see Fig. 5 below), and the green line - the region with the absence of accelerated electrons.
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malised to their maximum values. The results of a series of 
136 numerical experiments were processed. 

The number of regimes can be arbitrary. We have chosen 
four regimes. The result of the map operation is shown in 
Fig. 5, where dots of different colours are experimental data 
corresponding to different acceleration regimes. Regimes are 
revealed based on the operation of the map. Analysis of the 
unified distance matrix has demonstrated the correctness of 
the map operation. As seen from Fig. 5, the map revealed the 
region of laser-plasma parameters corresponding to the 
regime with a low charge and low average energy of electrons 
in the bunch (blue dots), the region corresponding to the 
regime with a large charge of accelerated electrons in the 
bunch, which also have a high energy (red dots), as well as the 
regions corresponding to intermediate regimes (dark green 
and light green dots). The second regime is most interesting 
for applications. In many cases (radiation sources, particle 
injectors, accelerators, etc.), a large electron charge in the 
bunch and a high particle energy are usually required. 
Moreover, the second regimes is characterised by a relatively 
small spread in the energy of accelerated electrons, which can 
also be important for some applications. 

4. Conclusions

In this work, we investigated the possibilities of machine 
learning based on a self-organising Kohonen map for analys-
ing the results of numerical simulation of laser-plasma inter-

action. In particular, the ability of the used algorithm to 
reveal different regimes of electron acceleration by a laser 
pulse propagating in a plasma was considered. The simula-
tion was carried out using a three-dimensional relativistic PIC 
code under the following simplifying assumptions: the sizes of 
laser pulses, the region of calculation, and the interaction 
time were small enough to reduce the calculation time and 
perform as many numerical experiments as possible in wide 
ranges of laser-plasma parameters. A total of 136 calculations 
were performed for various values of the laser pulse ampli-
tude and plasma concentration. As the simulation results for 
each set of laser-plasma parameters, the charge, average 
energy, and average energy spread of accelerated electrons in 
the bunch were calculated, which served as a set of input 
parameters for the Kohonen map. Another input parameter 
is the number of possible interaction regimes. In our case, 
four regimes were considered. As a result of the work of the 
map, a regime was revealed with a large charge of the bunch, 
high average energy of electrons and a relatively small spread 
in their energy. This regime is optimal for applications. The 
regime with low charge and low energy and intermediate 
regimes are also revealed. A visual analysis of the data 
obtained in numerical experiments showed the reasonable-
ness of the result of the map. 

It should be noted that at this stage, the search for new 
regimes of laser-plasma acceleration of electrons was not the 
goal of this work. Its main goal was to explore the capabilities 
of machine learning methods to identify such regimes. 
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Therefore, to speed up the calculations in the simulation, 
rather short and highly focused pulses of laser radiation were 
used, and the plasma concentration was high in order to 
reduce the acceleration time. In the future, it is planned to 
apply the developed algorithm based on the Kohonen map 
for the analysis of numerical experiments with more realistic 
parameters, which, however, require more serious computer 
resources. Moreover, since the space of output parameters 
(charge of the bunch, average energy of electrons in the 
bunch, their energy spread) was three-dimensional, visual 
analysis is possible (although not convenient, compared to 
the two-dimensional space of parameters) to reveal the accel-
eration regime. In subsequent works, we propose to consider 
the parameter space, the dimension of which is more than 
three (for example, adding spin depolarisation, angular 
spread, or the emittance of a bunch of accelerated electrons). 
In this case, visual analysis becomes ineffective. In the future, 
it is also planned to explore the possibilities of other machine-
learning methods.
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