
Quantum Electronics  51 (9)  819 – 825  (2021)	 © 2021  Kvantovaya Elektronika and IOP Publishing Limited

Abstract.  Analytical methods are used to study the properties of a 
wake wave excited by a relativistic laser pulse passing through a 
blurred boundary of a homogeneous plasma. It is found that on the 
plasma density plateau near its boundary, the wake wave is not 
regular and its phase velocity depends on the spatial coordinate. It 
is shown that the breaking of a wake wave is a threshold process in 
terms of the electron oscillation energy; the influence of the transi-
tion layer parameters on the process of wake wave breaking is 
determined.

Keywords: laser pulse, wake wave, phase velocity, electron oscilla-
tions, inhomogeneous plasma.

1. Introduction 

In recent decades, a significant progress has been observed in 
the development of the technology of laser-plasma accelera-
tion of electrons, based on which electron bunches with ener-
gies of several GeV have already been obtained [1]. This tech-
nology is promising for developing compact facilities capable 
of producing high-energy electron bunches required for many 
applications. However, the development of laser-plasma 
accelerators suitable for practical use still faces a number of 
problems associated with the lack of stability during the 
acceleration of electron bunches and poor control over their 
characteristics. These problems largely come to the fore even 
at the stage of injection of electrons into the accelerating 
plasma wave produced by a laser pulse. This is because in a 
laser-plasma accelerator, a bunch of accelerated electrons is 
usually formed from background plasma electrons upon the 
breaking of the wake wave; the process by its nature often 
depends on many random factors and is therefore difficult to 
control. 

There are methods for controlled injection of electrons, 
for example, injection of electrons into the wakefield due to 
the collision of two laser pulses [2] or injection of electrons 
due to ionisation [3], but they complicate the design of the 
accelerator or cause a number of other problems. For this 
reason, the injection of electrons during the breaking of the 
laser pulse wake wave remains the most frequently used 
method of injecting electrons in a laser-plasma accelerator. 
This method requires a deeper study, both theoretical for bet-

ter understanding the physical mechanism under various con-
ditions and practical in order to develop injection control 
methods. 

Among the studies in this direction carried out in Russia, 
one should distinguish Refs [4, 5], which laid the foundation 
for the study of the process of self-injection of electrons into 
the wake wave of a laser pulse during its propagation in an 
inhomogeneous plasma. In these works, Bulanov et al. 
showed that on a decreasing plasma density gradient, the 
phase velocity of the wake wave decreases, and it becomes 
possible to trap electrons in the accelerating field of the wake 
wave. It was also shown that the characteristics of the bunch 
could be controlled by choosing the plasma density gradient 
and laser pulse parameters. 

Among the works of foreign researchers, special attention 
should be paid to paper [6], which reports the results of study-
ing the process of self-injection of electrons into the wakefield 
of a laser pulse propagating in the plasma bubble regime in a 
gas cell with uniform electron density. The authors presented 
the results of experiments and simulations, from which it fol-
lows that the trapping of electrons into the accelerating field 
of the cavity actually occurs in two stages: at the beginning, 
when the self-focusing of the laser pulse breaks the wake 
wave, electrons are captured into the bunch formed for accel-
eration by the longitudinal self-injection mechanism, and 
then due to the transverse one. It was found that longitudinal 
injection, which is always observed at the beginning of the 
bunch formation process, leads to a much more stable accel-
eration and the formation of better-quality electron beams. 

This conclusion is also confirmed by the results of Ref. [7], 
in which, during numerical simulations, a controlled injection 
of electrons into the wake field produced by a laser pulse was 
observed in a distinctly defined place in space at a definite 
time instant. This study examined the passage of a laser pulse 
through a rarefied plasma target with an up-ramp density 
profile followed by a plateau. It was shown that the large 
diameter of the laser focal spot leads to a substantially one-
dimensional wakefield formation regime, which differs from 
the bubble regime that occurs for tightly focused beams of the 
laser driver. Thus, conditions were provided for the longitudi-
nal mechanism of self-injection of electrons, and the ascend-
ing profile led to a sharp breakdown of the one-dimensional 
wave at the rise-plateau transition. The results of the study 
showed that under these conditions an ultra-thin (several 
nanometres, which corresponds to an attosecond duration) 
ultradense relativistic electron layer is generated, which is 
injected and accelerated in the wake field. 

Works [8 – 12] is devoted to the theoretical analysis of the 
process of longitudinal self-injection of electrons into a wake 
wave generated by a laser pulse. They show that this phenom-
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enon is based on the process of crossing the trajectories of 
electrons performing longitudinal oscillations under the 
action of a laser pulse. The intersection of electron trajecto-
ries leads to the breaking of the wake wave, mixing of elec-
trons and their trapping in the accelerating field of the wake 
wave. Thus, the breaking of the wake wave and the genera-
tion of electron bunches by a laser pulse are interrelated pro-
cesses. A theoretical study of the conditions under which the 
breaking of a wake wave is possible in the case of a laser pulse 
propagating through an inhomogeneous plasma provides a 
key to understanding the mechanism of electron bunch gen-
eration under various conditions and to optimising this pro-
cess. 

In the general case, the phenomenon of the generating 
electron bunches by a laser pulse is a very complex process 
that strongly depends on the plasma profile, its parameters, 
and the characteristics of the laser pulse. In this paper, we 
investigate a rather limited problem in which a laser pulse 
propagates along an ascending plasma profile, and we study 
its solutions allowing the generation of electron bunches and 
passing in the limiting cases to the solutions obtained earlier 
in [8 – 12] for a plasma with a sharp boundary. In practice, this 
means that in our study, a transition layer of greater or lesser 
extent replaces the sharp plasma boundary and the behavior 
of the wake wave for a laser pulse of relativistic intensity 
interacting with such a semi-infinite plasma is investigated. 
The study aim is to find out the properties of the wake wave 
in such conditions, which in this case turns out to be signifi-
cantly irregular and unsteady, and to determine the condi-
tions for its breaking. 

2. Statement of the problem 

Let us consider in one-dimensional geometry the process of 
penetration of a circularly polarised laser pulse of relativistic 
intensity into a semi-infinite homogeneous rarefied plasma 
with a transition layer at the boundary separating it from 
vacuum. Let the laser pulse propagate along the normal to the 
plasma boundary and assume that the ionic component of the 
plasma is stationary. Plasma electrons interacting with a laser 
pulse are initially displaced in the direction of its propagation, 
and then, returning back to their equilibrium point, begin to 
perform longitudinal oscillations around it, thereby forming 
a wake wave. 

Let us assume that the laser pulse is short enough so that 
the near-boundary electrons, which were initially at the 
plasma density plateau, leave the laser pulse before they can 
pass into the transition layer during their motion. This 
assumption is fulfilled if the length of the laser pulse does not 
exceed the amplitude of the electron oscillations. We will also 
assume that when a laser pulse propagates along the plasma 
density plateau, its group velocity and shape do not change. 
Under these conditions, all the electrons that were initially on 
the plasma density plateau, immediately after the end of the 
action of the laser pulse on them, will move along trajectories 
that are similar, regardless of the initial location of the elec-
trons on the plateau. The difference between the trajectories is 
expressed only in a certain phase shift associated with the fact 
that the electrons located farther from the plasma boundary 
will later interact with the laser pulse. 

The initial similarity of the trajectories of electrons opens 
up the possibility of studying the remote consequences of 
their motion without a complete knowledge of all the charac-
teristics of the laser pulse that excited this motion. Thus, the 

motion of an oscillating electron near its centre of oscillation, 
which is its initial position on the plateau, is completely deter-
mined by the value of the total energy of such a plasma oscil-
lator, obtained by it from the laser pulse, and the initial phase 
of this motion, which is set by the group velocity of the laser 
pulse Vgr on the plateau. 

3. Trajectories of plasma electrons after 
interaction with a laser pulse 

Let us choose the z axis in the direction along which the laser 
pulse propagates, and let the origin on this axis be the point 
coinciding with the beginning of the plasma density plateau, 
that is, the point z = 0 is on the edge of the transition layer 
bounding a homogeneous plasma. The plasma density profile 
prior to exposure to a laser pulse (and, accordingly, the pro-
file of the stationary ionic background) is given by the depen-
dence n(z), which on the plateau at z ³ 0 has a constant value 
n(z) = n0. The displacement of the electron from the point of 
its initial location z0 to the point z gives rise to a charge sepa-
ration field Ez, which returns the electron back to its centre of 
oscillation: 
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where e is the electron charge. Note that an electron from the 
plasma density plateau can exit into the transition layer at the 
plasma boundary; therefore, Eqn (1) uses a general represen-
tation for the background profile of ion density.

The motion of the plasma oscillator obeys the energy con-
servation law:
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where m is the electron mass; c is the speed of light; p = mu ́
( /u c1 2 2

- )–1 is the relativistic momentum of the electron; 
and u = dz/dt is its velocity. 

Relation (2) allows the trajectory of any electron from the 
plasma density plateau to be expressed in integral form. Let 
us assume that at the beginning of the motion after interac-
tion with the laser pulse, the trajectories of all electrons from 
the plateau are similar. Then, taking into account the phase 
shift Dz0 /Vgr between the trajectories of electrons, whose cen-
tres of oscillations are at a distance of Dz0 from each other, we 
can generally express the set of these trajectories depending 
on time t as
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is the time interval required for the electron to move from its 
oscillation centre z0 to its extreme rightmost position z0 + Am 
and return back; and ( ) 2 ( , ( ), )T z c I z z z zlft bn

1
0 0 0 0= -  is the time 

interval required for the electron to move from the centre of 
oscillation z0 to its extreme leftmost position zbn(z0) and 
return back. The coordinate zbn(z0) is the turning point on the 
electron trajectory, and its value must be determined from 
Eqn (2), since it is its root. 

The difference in the expressions for electron oscillations 
to the left and to the right from its oscillation centre is due to 
the fact that electrons from the plasma density plateau when 
moving to the left can enter the transition layer, whereas when 
moving to the right from the oscillation centre, they have the 
same deviation amplitude ( ) /( )A W mc e n2m os

2 2
0p= - . 

When integrating Eqn (2), the integration constant is deter-
mined from the condition that the electron, initially located at 
the edge of the plasma density z0 = 0 at the time t = 0, moves 
to the left with a velocity /u c m c W1 os

2 4 2
= - . An integer 

K  =  1, 2, ... means the number of oscillations made by an 
electron with the oscillation centre at the point z0, while Eqn 
(3) describes those parts of the trajectories of electrons in 
which they move from the leftmost point of their trajectory to 
the right. It is important to note that Eqn (3) is exact as long 
as the order of the electrons remains unchanged in the process 
of their oscillations. 

The collective motion of plasma electrons after their inter-
action with the laser pulse forms a wake wave. When the 
amplitude of the laser pulse is not too high and the electrons 
under consideration do not leave the transition layer, a regu-
lar nonlinear wake wave is formed behind the laser pulse, 
which has the properties of an ordinary one-dimensional rela-
tivistic plasma wave [13]. This wave motion of the plasma is 
stationary in the coordinate system moving with the wave propa-
gation velocity Vph, which coincides with the propagation 
velocity of the laser pulse in a homogeneous plasma,  Vph = Vgr. 

It is known that with an increase in amplitude, even in a 
homogeneous plasma, the plasma wave is broken [5, 13]. The 
breaking condition is the coincidence of the maximum elec-
tron oscillation velocity with the phase velocity of the wake 
wave, umax = Vph.  Physically, the breaking of a plasma (wake) 
wave is expressed in the intersection of electron trajectories 
and the development of the process of generation of electron 
bunches [8 – 11]. 

The presence of a transition layer near the plasma bound-
ary complicates the nature of the wake wave, because in the 
region of the plasma boundary, the wave becomes irregular. 
This is because when an electron passes through the transition 
layer, the similarity of the electron trajectories is violated, 
and, therefore, the phase difference between the electron 
oscillations changes. Moreover, it is known that it is precisely 
near the plasma boundary that electron bunches are gener-
ated, which are subsequently trapped and accelerated by the 
wake wave. 

4. Threshold character of the process of wake 
wave breaking 

In order to clarify the conditions for breaking the wake wave, 
leading to the generation of electron bunches, it is necessary 
to determine the conditions under which the trajectories of 
two neighbouring plasma electrons intersect. In this case, it is 
of particular importance to determine the minimum energy of 
longitudinal oscillations of electrons, at which the processes 
under consideration become possible in principle. 

The condition for the intersection of the trajectory of an 
electron with the centre of oscillation at the point z0 with the 
trajectory of an electron adjacent to it is dZ/dz0 = 0, where Z 
= Z(z0, Wos, t) is its trajectory. Differentiating expression (3), 
we arrive at an equation that determines the coordinate zcr, in 
which, for a given value of the total energy of longitudinal 
oscillations of electrons Wos, the trajectories will intersect: 
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where kp = wp/c, and 4 /e n mp
2
0pw =  is the plasma fre-

quency. 
Of interest is the minimum oscillation energy of electrons, 

at which the intersection of their trajectories is possible. For 
an electron with an oscillation centre at the point z0, the cor-
responding value of Wos is found from Eqn (6) according to 
the condition dWos /dzcr = 0. As a result, we arrive at the rela-
tion zcr = z0, that is, the intersection of the electron trajectory 
with the ‘neighbouring’ trajectory at the minimum possible 
value of its oscillation energy occurs at the time when the elec-
tron passes through its oscillation centre. Then, from relation 
(6), the value of the minimum energy for an electron with an 
oscillation centre at the point z0 is determined:
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where b = Vgr /c. 
Analysis of Eqn (7) allows us to draw a number of impor-

tant conclusions. Since for an electron entering the transition 
layer, the half-period of oscillations Tlft(z0, Wos) at the left-
most point of the trajectory at a fixed value of Wos is the 
larger, the closer its oscillation centre is to the edge of the 
transition layer, for such electrons the derivative is 
¶Tlft(z0, Wos) /¶z0 < 0. This means that the breaking in the 
first period of oscillations will occur at a lower energy than in 
subsequent periods and, therefore, in what follows, we take 
K = 1. 

It also follows from Eqn (7) that the process of wake wave 
breaking at its first period in the interaction of a laser pulse 
with a semi-infinite plasma having a blurred boundary has a 
threshold character. This means that the intersection of the 
trajectory of an electron with a neighbouring one is possible 
only if its total energy of longitudinal oscillations exceeds a 
certain value determined in this case by Eqn (7). However, the 
value of Wos found in this way depends on the choice of an 
electron with the corresponding oscillation centre z0. It is nec-
essary to find the lowest energy value at which the wake wave 
can be broken somewhere in space, and to determine the posi-
tion of the electron from which this process will begin. 

To this end, consider the dependence of the time interval  
Tlft(z0, Wos)  on the coordinate z0. The study shows that in the 
range 0 £ z0 £ Am the function ¶Tlft(z0, Wos) /¶z0 monotoni-
cally increases to a value equal to zero at the point z0 = Am, 
and then ¶Tlft(z0, Wos) /¶z0 = 0 for z0 ³ Am. According to 
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Eqn  (7), this means that the threshold energy value for the 
process of breaking a wake wave in a plasma with a diffuse 
boundary is

/W mc mc1osth ph
2 2 2b g= - = .	 (8)

Note that the value of the threshold energy does not 
depend on the shape of the transition layer and, accordingly, 
coincides with the value obtained in [8] for the case of a sharp 
plasma boundary. The position of the electron, from which 
the process of breaking the wake wave begins, z0 = Am, also 
coincides with the result of [8], since this electron is ahead of 
the oscillation phase of other electrons with oscillation cen-
tres z0 > Am, for which the threshold energy is the same. 

To illustrate these conclusions, we calculated the penetra-
tion of a circularly polarised laser pulse of relativistic inten-
sity into the plasma. At the moment t0 the pulse passing the 
beginning of the plasma plateau (z = 0) has an envelope of the 
form a = [ ]cos ( ) / ( / )a t t t t2las las0

2
0 0pt q t- - - . Here  

| | /a e A mc0 0
2

=  = 5.652 is the dimensionless amplitude of the 
vector potential; tlas is the laser pulse duration corresponding 
to its FWHM duration tFWHM = 1.143tlas = 12 fs; and q is the 
Heaviside function. It is assumed that the group velocity Vgr 
of laser pulse propagation on the plasma plateau corresponds 
to the gamma factor gph = / /V c1 1 7gr

2 2
- =  and the plasma 

density at the plateau corresponds to the relatio k0 /kp = gph, 
where k0 = 2p/l0, l0 = 1 mm is the laser radiation wavelength. 
A laser pulse with such characteristics, when interacting with 
a plasma of a given density, excites longitudinal oscillations 
of electrons with an energy Wos = 7mc2 at the plateau of its 
profile, that is, the propagation of a wake wave in the plasma 
occurs on the verge of its breaking. 

Figure 1 shows for different thicknesses of the transition 
layer the results of calculations of the relative position of the 
laser pulse | e |A/mc2, wake potential | e |j/mc2, force Fz = 
– | e |Ez /mcwp, acting on electrons in the wakefield, and elec-
tron macroparticles at the time, when an electron with an 
oscillation centre z0 = Am in the process of its motion comes 
to the point of intersection of its trajectory with the trajectory 
of a neighbouring electron, which corresponds to the begin-
ning of the process of breaking the wake wave. 

Since for the chosen parameters of the laser pulse, the 
total energy of longitudinal oscillations of the electron is 
equal to the threshold energy of the wake wave breaking, then 
under such conditions the breaking itself does not occur and 
an electron bunch of an infinitely small charge is generated. In 
the calculations, it was assumed that the main volume (z ³ 0) 
of a plasma with a constant density n0 is separated from the 
vacuum by a transition layer, in which the plasma density 
changes as n(z) = )exp /(n z D0

2 2p-6 @, where D is the character-
istic thickness of the transition layer. It follows from Fig. 1 
that in the region of the plateau the nature of the wake wave 
and the distribution of electrons are similar, while in the 
region of the transition layer they are very different. It can be 
seen that in the ‘thick’ transition layer at D >>  lp (see Fig. 1b), 
when a laser pulse penetrates into a transparent semi-infinite 
plasma, a wake wave is formed at the trailing edge of the laser 
pulse, the characteristics of which (amplitude, oscillation 
period) smoothly change along the transition layer. At the 
same time, under conditions when the thickness of the transi-
tion layer is comparable to the size of the wake wave, a sharp 
change in its parameters is observed. This is because under the 
action of a laser pulse, the motion of electrons that were ini-

tially near the edge of the plasma density, both in the transi-
tion layer and on the density plateau, substantially depends 
on the thickness of the transition layer. For this reason, it 
should be expected that in the case of a higher-power laser 
pulse acting on the plasma, which transfers energy to the 
plasma electrons exceeding the threshold value, the nature of 
the wake wave breaking will depend on the thickness of the 
transition layer, since with an increase in the electron oscilla-
tion amplitude, more intense probing of the transition plasma 
layer by electrons from the plateau will occur. 

5. Breaking of the wake wave at 
the above-threshold electron oscillation energy 

Let us consider the situation when a laser pulse penetrating 
into the plasma transfers to plasma electrons an energy 
greater than its threshold value (8) determined by the group 
velocity of the pulse. In this case, the wake wave excited by 
the laser pulse will inevitably break. It is known [8, 9] that in 
the case of a sharp plasma boundary, the electron, from which 
the wake wave break begins in the above-threshold process, 
still has its oscillation centre at the same point z0 = Am, as at 
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Figure 1.  Relative position of the laser pulse | e |A/mc2 (dashed line), 
wake potential | e |j/mc2 (solid curve), force Fz = – | e |Ez/mcwp, acting on 
electrons in the wakefield (dotted curve), and electron macroparticles 
(circles) at the moment the wake wave begins to break, the transition 
layer thickness being D = (a) 8 and (b) 80 mm. The horizontal dashed 
line marks the momentum of an electron macroparticle corresponding 
to the total oscillation energy Wos.
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the threshold value of the electron oscillation energy, and the 
breaking point of the wave is determined by the relation

( / )z A k W mc2br p os phm
1 2 g= - -- .	 (9)

It is clear that in the case of a small excess above the thresh-
old, Wos /mc2 – gph <<  gph, the breaking point zbr is located in 
the plasma volume, and not in the vacuum region, where the 
near-boundary electrons fly out in the case of a sharp boundary. 

In a plasma with a blurred boundary, with the total energy 
of electrons slightly above the threshold, the centre of oscilla-
tion of the electron, from which the breaking process begins, 
as well as the point of the wake wave breaking, will be slightly 
displaced from the corresponding points in plasma with a 
sharp boundary. In other words, in the case of a blurred 
plasma boundary with not too high electron oscillation energy 
Wos, one should expect that the wake wave breaking would 
occur in the region of the plasma density plateau. Then we 
can write the equation for the trajectories of electrons (3) in a 
simpler form: 
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Relations (10), (11), similarly to relations (3), (4), describe 
the trajectories of electrons forming a wake wave in that part 
of it where electrons move from the leftmost point of their 
trajectory to the rightmost one. In this case, only the first 
period of oscillations is considered. The last term in Eqn (10) 
takes into account that in the course of its motion, an electron 
can enter the transition layer. It should be noted that the pas-
sage of an electron through the transition layer changes the 
phase shift between the oscillations of individual electrons, 
which is a significant factor affecting the nature of the inter-
section of electron trajectories. In this case, the similarity of 
the electron trajectories in the region of the plasma density 
plateau is restored, albeit with a different phase shift between 
their oscillations. This circumstance makes it possible to sim-
plify the mathematical description of the physical phenome-
non under consideration. 

Applying the condition of intersection of electron trajec-
tories dZ/dz0 = 0 to the trajectories described by Eqns (10), 
(11), we obtain for an arbitrary electron from the plasma den-
sity plateau the relation
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where u(zcr, z0) is the velocity of an electron with an oscilla-
tion centre at point z0 at the moment of its trajectory intersec-
tion with the trajectory of a neighboring electron at point zcr. 

On the other hand, expression (10) can be used to calcu-
late the phase velocity of the wake wave. However, since the 
trajectories of electrons described by relations (10) and (11) 
are not only nonharmonic, but also generally even nonsimilar 
due to the electrons entering the transition layer, it is first nec-
essary to generalise the usual definition of the concept of the 
phase of a wake wave to the case of such trajectories. Below, 

by the phase of the wake wave at any point z in space at any 
fixed time moment we mean the deviation D from the centre 
of oscillations z0 of the electron that is at the point z at a given 
time. To find out the phase velocity of a wake wave, which 
has a complex irregular character, it is necessary to trace the 
velocity of its phase movement for a preselected and fixed 
value of D = z0 – z. Replacing in Eqns (10), (11) z0 = zD + D 
and calculating the derivative dzD /dt, we can determine the 
phase velocity of propagation of any phase of an irregular 
wake wave:

D
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Comparing Eqns (12) and (13), we see that at the moment 
of intersection of the trajectories of electrons, their velocity 
is equal to the velocity of the wake wave phase, determined 
by the above method. It also follows from Eqn (13) that the 
irregular wake wave, which is formed by electrons that have 
passed through the transition layer, has a phase velocity that 
depends on the spatial coordinate, and each phase of the 
irregular wake wave propagates with its own phase velocity. 
Thus, the irregular wave also differs by this from the usual 
regular wake wave for a laser pulse propagating in a homo-
geneous plasma, in which the phase velocity is the same for 
all its oscillation phases. The size of the boundary region on 
the plasma density plateau, in which the wake wave is irreg-
ular, is determined by the dependence ¶ (T zlft +D  ¶, ) /W zos 0D  
and, therefore, is equal to the amplitude of electron oscilla-
tions Am. 

The complex wave motion of the plasma, which is realised 
near its boundary, turns into a regime of wave breaking and 
generating an electron bunch, when at a certain point in space 
at a certain moment in time it turns out that the velocity of an 
electron located at this point coincides with the phase velocity 
of the wake wave. The point in space zbr, from which the pro-
cess of the wake wave breaking begins, is the point where con-
dition (12) occurs earlier. 

According to relation (10), each pair of values z0 and zcr 
corresponds to the time tcr of the intersection of the trajecto-
ries. Calculating the derivative dzcr /dz0 with Eqn (12) taken 
into account, we obtain

z
( , )d

d
d
d

z
t

z u z z
1cr cr

cr0 0 0
= .	 (14)

From Eqn (14) it follows that the condition dzcr /dz0 = 0 deter-
mines the centre of oscillation z0 f of the electron from which 
the process of the wake wave breaking begins. Then, from the 
relation

z z kcr p0
1

= - -

	 ´ 2
¶

¶
/ /

( , )
mc
W c

z
T z W

1 1 1 1os lft os
2

0

0

b
- - +

2

< F) 3 	 (15)

we find the spatial position of the breaking point zbr and from 
relation (10) we find the breaking time tbr. 

However, a practical solution to the problem of exact ana-
lytical determination of the minimum of function (15) is not 
possible. Therefore, we use an approximate representation of 
the function Tlft(z0, Wos) for points z0 £ Am under the condi-
tion Am – z0 <<  Am:
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The study of Eqn (16) shows that when the relation 
Wos/(mc2) – gph >>    . /A0 06 p phm

14 6 8 12
ck D  is satisfied, the minimum 

of function (16) is determined by the expression 
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W mc k Dz 1
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3 / / /

f m
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os ph p
0 2

22 3 1 3 4 3p
g
g

= -
-b l) 3.	 (17)

It follows from Eqn (17) that in the above-threshold pro-
cess in the case of a blurred plasma boundary the wake wave 
breaking occurs in such a way that the centre of electron oscil-
lations, from which the breaking process begins, shifts closer 
to the edge of the plasma density. The more shallow the tran-
sition layer, the greater this displacement. The displacement 
also increases with increasing overthreshold level of the 
breaking process. With a large overthreshold and with a very 
shallow transition layer, the electron, from which the process 
of breaking the wake wave begins, can be displaced into the 
transition layer. This is confirmed by simulation, but under 
such conditions the approximate formula (17) becomes inap-
plicable. 

The reason for the shift of the breakiing point into the 
transition layer for a gently sloping plasma profile is clear 
from Fig. 1b, which demonstrates that in a very flat transition 
layer, the wake wave differs insignificantly in its parameters 
from the wave formed on the plasma density plateau. And 
although Eqn (17) is inapplicable in this region, the analytical 
method used in this study can also be applied to the transition 
layer if the phase velocity of the wake wave changes weakly. 

Figure 2 shows the plots of the change in the phase veloc-
ity of the wake wave along the spatial coordinate for the value 
of the phase at which the wake potential has a minimum for 
different thicknesses of the transition layer. The figure shows 
that the thinner the transition layer, the higher the phase 
velocity of the wake wave in it. The values of the phase veloc-
ity in the thin transition layer are much higher than the speed 
of light; therefore, the breaking of the wake wave in such a 
transition layer becomes impossible. And vice versa, if the 
degree of blurring of the plasma boundary is very high, then 
the phase velocity of the wake wave in the layer can be less 

than the light velocity, and if the breaking threshold is suffi-
ciently exceeded, the destruction of the wake wave with the 
generation of an electron bunch can begin in the transition 
layer, and not in the region of the plasma density plateau. 

The presented results, obtained for one-dimensional 
geometry, in a real situation of a focused laser pulse with a 
characteristic transverse size r ~ slas  always relate to the ini-
tial stage of electron trapping in its wake wave. In Ref. [6], it 
was shown that at the first stage, by means of longitudinal 
self-injection into the bunch formed for acceleration, paraxial 
plasma electrons (r <<  slas) are trapped, which pass through 
the laser pulse, practically not deflecting in the transverse 
direction due to the smallness of the transverse component of 
the ponderomotive force for them. At the second stage, with 
some time delay, by means of transverse self-injection, elec-
trons are trapped into the bunch formed for acceleration, 
which are initially located at a distance kpslas >>    a0  [7] from 
the laser pulse axis. This occurs in the bubble regime [14 – 16], 
when the ponderomotive force displaces electrons from the 
propagation axis of the laser pulse and forms a cavity free of 
electrons in its wake. Electrons circulate around the laser 
pulse and bubble and reach the phase velocity of the wake 
near the back of the bubble. 

Usually, upon a sufficiently strong focusing of the laser 
pulse, the charge of the trapped bunch is formed mainly due 
to the mechanism of transverse self-injection. However, to 
take advantage of the trapped and accelerated electron bunch 
quality that the longitudinal self-injection mechanism pro-
vides, this mechanism can be made dominant. For this pur-
pose, as verified by numerical simulation, the laser pulse 
should be wide enough, kpslas >>    a0  [7], and no cavity 
behind the laser pulse is formed. For a plasma density corre-
sponding to  k0 /kp = 7 and a laser pulse with an amplitude a0 
= 5.652 and a characteristic transverse size slas = 20l0, this 
condition is satisfied. Then the motion of plasma electrons 
will be approximately one-dimensional, and the study of the 
process of breaking the wake wave can be carried out in one-
dimensional geometry. 

6. Conclusions 

An analytical study of the penetration of a laser pulse of rela-
tivistic intensity into a semi-infinite rarefied plasma with a 
transition layer at the boundary, carried out in one-dimen-
sional geometry, made it possible to clarify the properties of 
the wake wave generated by the laser pulse and the conditions 
for its breaking. It is shown that the wake wave generated 
after the laser pulse passing through the diffuse plasma 
boundary is irregular not only in the transition layer, but also 
in a certain region of the plasma density plateau near the 
boundary. The thickness of this region on the plasma plateau 
is equal to the amplitude of the oscillations of electrons, 
whose longitudinal oscillations are excited by a laser pulse. 
The phase velocity of the wake wave in this area depends on 
the spatial coordinate, and each phase of the oscillation has 
its own phase velocity. 

It was found that the process of wake wave breaking has a 
threshold character and becomes possible if the total energy 
of longitudinal oscillations of electrons exceeds the gamma 
factor determined by the group velocity of the laser pulse on 
the plasma density plateau. Thus, the breaking threshold is 
independent of the shape of the transition layer at the plasma 
boundary. It is shown that at the threshold value of the elec-
tron oscillation energy, the process of wake wave breaking 

Vph/c
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–30 –20 –10 0 kpz

Figure 2.  Dependence of the phase velocity of the wake wave on the 
coordinate along the plasma profile for a transition layer thickness of 
(   ) 8, (   ) 40, and (   ) 80 mm. The vertical dashed line shows the posi-
tion of the density edge of the transition plasma layer.
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begins with the electron that is initially located at a distance 
equal to the amplitude of its oscillations from the edge of the 
transition layer. It was found that with an increase in the 
overthreshold value of the breaking process, the centre of 
electron oscillation, from which the breaking process begins, 
shifts closer to the plasma boundary. The mildler the slope of 
the transition layer at the plasma boundary, the greater this 
displacement. The excess of the electron oscillation energy 
over the threshold value also shifts the breaking point closer 
to the plasma boundary. 
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