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Abstract. A theory is developed for the effect of coherent popula-
tion trapping (CPT) in ‘hot’ atoms under pulsed pumping in an opti-
cally dense medium with a buffer gas. The case is considered when 
the excited level is not degenerate. Based on an analysis of the 
shape of Ramsey resonances, we show that with increasing optical 
density of the medium, the dependence of the light shifts of the CPT 
resonance becomes more and more nontrivial. The dependence of 
the light shifts of the CPT resonance on the magnitude of the hyper-
fine splitting of the excited level, concentration of active atoms, 
temperature, and duration of the dark pause is constructed.

Keywords: coherent population trapping, Ramsey method, opti-
cally dense medium, ‘hot’ atoms.

1. Introduction

It is known that the interaction of bichromatic laser radiation 
with atomic ensembles leads under certain conditions to the 
appearance of coherent population trapping (CPT) [1 – 4]. 
This phenomenon is resonant in relation to the frequency dif-
ference of the incident fields. It is noteworthy that the width 
of such resonances can be many times (several orders of mag-
nitude) smaller than the natural width of the optical transi-
tion. This fact makes it possible to use the CPT phenomenon 
in various practical applications: in optical magnetometers 
[5 – 7], in inversionless lasers [8, 9], in ultrahigh-resolution 
spectroscopy [10, 11], in devices for recording and processing 
quantum information [12 – 14], and in quantum frequency 
standards [15 – 22].

One of the possible scenarios for increasing the stability of 
CPT-based miniature quantum frequency standards is the use 
of pulsed pumping (Ramsey method) [23, 24]. The essence of 
this method is as follows: The first long (pumping) pulse 
transfers the system to a stationary CPT state; then there is a 
dark pause, during which the system freely evolves, followed 
by a second short (interrogation) pulse, which detects the sys-
tem in the CPT state. In this case, the width of Ramsey reso-
nances is determined only by the duration of the dark pause 
and can reach hundreds or even tens of hertz [24].

In the last decade, many papers have appeared on the 
study of the shape of CPT resonances with the Ramsey 

method of pulsed excitation. For example, works [25, 26] are 
devoted to the study of new methods for increasing the con-
trast of the CPT resonance. The search for the possibility of 
increasing the stability of atomic clocks is described in 
[27 – 30]. The effect of the buffer gas pressure on the shape of 
the CPT resonance in the Raman – Ramsey scheme for 87Rb 
atoms was studied in Refs [31 – 35], and new methods were 
tested in Refs [36 – 38] in order to reduce the light shift of the 
CPT resonance under pulsed excitation. Lenci et al. [39] 
observed Ramsey fringes in the study of the effect of light-
induced transparency. Liu et al. [40] examined pulsed excita-
tion of the CPT resonance in a closed delta scheme. The meth-
ods of suppressing the light shift in Ramsey spectroscopy are 
discussed in theoretical works [41 – 45], and experimental ver-
ification of these methods was performed in [46, 47].

In the process of creating a frequency standard, it is neces-
sary to increase the signal, which can be done by increasing 
the number of active atoms. When their concentration na 
reaches a certain value, the effects associated with the absorp-
tion of transmitted radiation through a medium with active 
atoms begin to appear. In this case, the medium is treated 
to be optically dense. The effect of the optical density of a 
medium on the shape of the lines of CPT resonances detected 
by the Ramsey method was considered theoretically in 
Refs [35, 48, 49]. An increase in the concentration of active 
atoms is achieved by increasing the temperature of the 
medium. However, the motion of atoms leads to such effects 
as Doppler and collisional broadening and level shifts, which 
in turn results in a decrease in the cross section for light scat-
tering by individual atoms and, as a consequence, in a decrease 
in the optical thickness of the ensemble. In this regard, the 
correct account for the influence of the motion of atoms and, 
consequently, of temperature is a very important problem in 
the case of optically dense media. Of particular practical 
interest is the analysis of the effect of the motion of atoms on 
the frequency shifts of the reference resonances. In this case, 
random changes in temperature will lead to random changes 
in these shifts and negatively affect the stability of the CPT-
based frequency standard.

The aim of this work is to construct a theory describing 
the processes of interaction of two-frequency laser radiation 
with an optically dense medium of alkali atoms, taking into 
account their temperature. An analysis is performed of 
changes in the shape and shifts of CPT resonances detected by 
the Ramsey method, which arise as a result of this interaction, 
with increasing temperature. It should be noted that, in con-
trast to Ref. [50], we consider an optically dense medium. This 
leads to the fact that the task becomes much more time con-
suming and a number of computational difficulties arise. The 
main result of this work is the discovery of nonmonotonic 
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dependences of the light shifts of the CPT resonance under 
pulsed excitation in an optically dense medium. In Section 2, 
the mathematical model is described in detail and the basic 
equations are derived, Section 3 is devoted to the results of 
numerical calculations. In Section 4, the main conclusions of 
the work are formulated.

2. Mathematical model

To construct a mathematical model of the interaction of 
bichromatic laser radiation with an atomic medium, we will 
use a semi-classical approach, in which radiation is described 
as a plane electromagnetic wave with two carrier frequencies 
(w1 and w2) propagating along the z axis. The vector of the 
electric component intensity of such a wave can be written in 
the form

E (z, t) = E1(z, t)exp[– i(w1t – k1z)]

 + E2(z, t)exp[– i(w2t – k2z)] + c.c., (1)

where kj and Ej are the wavenumbers and complex amplitudes 
of the corresponding frequency components of the wave (  j = 
1, 2).

The field of such a wave contains a medium of active 
alkali atoms and a buffer gas. Let us consider a four-level 
atomic model (Fig. 1), in which the first two states|gñ, g = 1, 2 
are assumed to be ground states corresponding to the hyper-
fine splitting of the s-state, and the other two states |eñ, e = 3, 
4 are the excited states corresponding to hyperfine splitting of 
the p-state. In this case, the frequencies of the fields E1 and E2 
will be considered close to the frequencies of the transitions 
|1ñ « |eñ and |2ñ « |eñ.

The state of an ensemble of active atoms will be described 
by the method of a one-particle density matrix, which in 
Wigner’s representation in terms of the translational degrees 
of freedom of atoms [( ( , , )tp rrt )] satisfies the quantum kinetic 
equation [51]:

¶
¶ ( , , ) , ( , , )i
t m t H t

p
p r p rd

'
r r+ = - +t t tc m 6 @

 { ( , , )} { ( , , )}R t S tp r p rr r+ +tt t tt t ,  (2)

where m is the mass of the atom; p = mu is the momentum of 
the translational motion of the atom; Ht  is the Hamiltonian 
of the system; Rtt  is the operator that phenomenologically 
takes into account the spontaneous relaxation of atoms; and 
Stt  is the operator of collision integrals. Collisions are assumed 
to be both between active atoms and buffer gas atoms.

The Hamiltonian of an atom can be represented as H =t  
H V0+t t , where

| |H n n
n

0
1

4

HG=
=

t /
is the Hamiltonian of an atom that does not interact with the 
field;

( , ) ( [ ( )]exp iV t d E t k zdE r 31 1 1 1w= - = - - -t t

 [ ( )])|3 1| ( [ ( )]exp expi iE t k z d E t k z*
1 1 1 32 2 2 2HGw w+ - - - -

 [ ( )])|3 | ( [ ( )]exp expi iE t k z d E t k z2*
2 2 2 41 1 1 1HGw w+ - - - -

 [ ( )])|4 1| ( [ ( )]exp expi iE t k z d E t k z*
1 1 1 42 2 2 2HGw w+ - - - -

 [ ( )])|4 2| . .exp i h cE t k z*
2 2 2 HGw+ - +   (3)

is the operator of interaction in the dipole approximation;  
dd ed=t t  is the operator of the dipole moment of the atom; 

and dnm = | |n d mG Ht  are its matrix elements. In expression (3), 
we neglected the terms ~d Ege gl  for g g! l, e = 3, 4, assuming 
that the field E1 is significantly detuned from the transitions 
|2ñ « |eñ, and the field E2, from the transitions |1ñ « |eñ. We 
also neglect the effects associated with the vector nature of the 
field. We assume that the vector of the dipole moment of the 
atom is codirectional with the polarisation vectors of the 
wave (ed ej = 1, ej = Ej /Ej, j = 1, 2). The matrix element d12 = 0, 
since the electric dipole transition |1ñ « |2ñ is forbidden.

We emphasise that in the theoretical analysis of CPT 
effects, a simple three-level L-scheme of atomic states is very 
often used. At the same time, it is well known that the multi-
level nature of real atoms can significantly affect the optical 
properties of atomic ensembles and, in particular, the CPT 
and electromagnetically induced transparency effects [52 – 55]. 
In this case, it turns out [49, 50, 56] that taking into account 
even one additional excited state in the theoretical description 
leads to significant differences from the predictions obtained 
in the description of CPT in the framework of the L-model. 
Therefore, in this work, we analyse the simplest case of a mul-
tilevel system, namely, we take into account the presence of 
two excited states.

By assuming that the wave front is plane, the field diffrac-
tion is small at the cell edges, and the optical properties of the 
ensemble are uniform, we will neglect the dependence of the 
density matrix on the coordinates in the directions transverse 
to the laser beam, r =t  ( , , )z tr ut .

We write the elements of the collision integrals matrix in 
the strong collision model:

{ ( , , )} ( , , )S z t z tjj jjr nru u= -tt t` j

 ( ) ( , , )dM z t

( , ) ( , )

nj nn
n

n j g e
1

4

n ru u u+

!

=

l l/ y ,  ,j 1 4= , (4)
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Figure 1. Diagram of energy levels of active atoms and excited transi-
tions.
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{ ( , , )} { ( , , )}S z t S z t12 21r ru u=
*tt t tt t` `j j

 ( , , ) ( ) ( , , )dz t M z tcoh12 12nr n ru u u u= - + uu l ll y , (5)

{ ( , , )} { ( , , )} ( , , )S z t S z t z tge eg ger r nru u u= = -
*tt t tt t` `j j , (6)

 g = 1,2,  e = 3, 4,

where ( ) ( / )expM T T
3 2 2p u uu u= -
-^ h  is the Maxwellian veloc-

ity distribution; k T2 BTu = /m  is the most probable speed of 
translational motion of atoms; n is the total collision fre-
quency; nnm is the collision frequency leading to transitions 
from state |nñ to state |mñ; and  nmnuul  is the frequency of colli-
sions at which the low-frequency coherence r12(u, z, t) is pre-
served. It is assumed here that the energy of the thermal 
motion of atoms is insufficient for their excitation, as a result 
of which the corresponding terms ‘inputted’ to the given 
velocity group are excluded from the summation in (4). Also 
here we restrict ourselves to the approximation in which the 
optical coherences rge(u, z, t) are destroyed in any collision, 
due to which the ‘input’ terms in (6) are completely absent.

In all off-diagonal elements of the density matrix, a substi-
tution is made that selects a rapidly oscillating factor:

( , , ) ( , , ) [ ( )] ( , , )exp iz t z t t k z z tge eg g g ger r w ru u u= = -* u , (7)

 g = 1,2,  e = 3, 4,

( , , ) ( , , )z t z t12 21r ru u= *

 [ ( ) ( ) ] ( , , )exp i it k k z z t1 2 1 2 12w w r u= - - - u . (8)

The terms arising after substituting (7), (8) into (2) and 
oscillating with a double frequency (~exp[±2i(wgt –  kgz)]), 
will be discarded in the framework of the rotating wave 
approximation. Then the element-wise derived equation (2) 
has the form:

( ) ( ) ( ) ( ) ( )i i i* *
11 11 1 13 1 31 1 14r r r r k ru u u u u uW W Wd+ = - + -o u u u u

 ( ) ( ) ( ) ( )i
2

* *
1 41 33

2
44 11k r

g
r k r nru u u uW+ + + -u u u^ h

 ( ) ( ) ( ) ( )d dM M11 11 21 22n r n ru u u u u u+ +l l l ly y

 ( ) ( ) ( ) ( )d dM M31 33 41 44n r n ru u u u u u+ +l l l ly y , (9)

( ) ( ) ( ) ( )i i *
22 22 2 23 2 32r r r ru u u u uW Wd+ = - +o u u

 ( ) ( ) ( ) ( )i iq q q
2

* *
2 24 2 42 33

2
44r r

g
r ru u u uW W- + + +u u u u u^ h

 ( ) ( ) ( ) ( ) ( )d dM M22 22 22 12 11nr n r n ru u u u u u u- + +l l l ly y
 ( ) ( ) ( ) ( )d dM M32 33 42 44n r n ru u u u u u+ +l l l ly y , (10)

( ) ( ) ( ) ( ) ( )i i i*
33 33 1 13 1 31 2 23r r r r ru u u u u uW W Wd+ = - +o u u u

 ( ) ( ) ( )i *
2 32 33 33r gr nru u uW- - -u

 ( ) ( ) ( ) ( )d dM M33 33 43 44n r n ru u u u u u+ +l l l ly y , (11)

( ) ( ) ( ) ( )i i *
44 44 1 14 1 41r r k r k ru u u u uW Wd+ = - *o u u u u

( ) ( ) ) ( ( )i iq q q
2

* *
2 24 2 42

2 2
44 44r r

g
k r nru u u uW W+ - - + -u u u u u u^ h

 ( ) ( ) ( ) ( )d dM M44 44 34 33n r n ru u u u u u+ +l l l ly y , (12)

( ) ( ) ( ) ( ) ( )i i i* *
12 12 1 32 2 13 1 42r r r r k ru u u u u uW W Wd+ = - + *uo u u u u u

( ) [ (( ) ( ) ) ] ( )i iq k k2 14 2 1 1 2 12 12r n ru u uW D D G- + - + - - -u u u

 ( ) ( )dMcoh 12n ru u u+ uu l ll uy , (13)

( ) ( ) ( ) ( ) ( )i i i* * *
13 13 1 11 2 12 1 33r r r r ru u u u u uW W Wd+ = - - +uo u u u u

 [ ( ) ] ( )i k1 1 13u n r uD G+ - - - - u , (14)

( ) ( ) ( ) ( )i iq* *
14 14 1 11 2 12r r k r ru u u u uW Wd+ = - - **uo u u u u u

( ) [ ( ) ] ( )i i k*
1 44 1 34 1 14k r w u n ru uW D G+ + - - - - -*u u u , (15)

( ) ( ) ( ) ( )i i* *
23 23 1 21 2 22r r r ru u u u uW Wd+ = - -uo u u

 ( ) [ ( ) ] ( )i i k*
2 33 2 2 23r u n ru uW D G+ + - - - - u , (16)

( ) ( ) ( ) ( )i iq* *
24 24 1 21 2 22r r k r ru u u u uW Wd+ = - - **uo u u u u u

( ) [ ( ) ] ( )i iq k*
2 44 2 34 2 24r w u n ru uW D G+ + - - - - -*u u u , (17)

where /d Eg g g3 'W =  are the Rabi frequencies of the corre-
sponding fields; /d d41 31k =u  and /q d d42 32=u  are the ratios of 
the matrix elements of the dipole moment operator; gD =  

at
g g3w w-  are field detunings from atomic transitions |gñ « |3ñ; 

g is the rate of decay of the excited state |3ñ; G and G12 are the 
decay rates of optical and low-frequency coherences, respec-
tively; and u is the projection of the velocity vector u onto the 
z axis. Here, we use the weak field approximation (Wg <<  n), 
which allows one to neglect the populations of excited states 
in comparison with the populations of the ground states 
( ree <<  rgg). The arguments z and t have been omitted for 
brevity.

Note that the system of equations (9) – (17) was written 
without taking into account the long-range dipole-dipole 
interatomic interaction [57, 58], which is associated with 
the weakening of the resonance nature of this interaction 
in ensembles of atoms heated to high temperatures [59 – 61]. 
In this case, we will take into account the collective poly-
atomic effects due to the finite optical thickness [see below 
(32)].

To simplify this system, we pass to the reduced density 
matrix rnm (z, t) = ò rnm(u, z, t)du by integrating equations 
(9) – (13) over the velocities. In this case, due to the mentioned 
weak-field approximation, the rate dependences of the popu-
lations of the ground states and low-frequency coherence can 
be considered Maxwellian:

( , , ) ( ) ( , )z t M z tgg ggr ru u= , (18)

( , , ) ( ) ( , )z t M z t12 12r ru u=u u .  (19)
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The terms proportional to the gradients in the left-hand 
sides of Eqns (9) – (13) are discarded, neglecting the edge 
effects. Then equations (9) – (13) after integration over veloci-
ties take the form:

2 { [ ]} ( )Re i
211 1 13 14 33

2
44r r kr

g
r k rW= - + + +o u u u u

 ( )11 11 21 22 31 33 41 44n n r n r n r n r+ - + + + , (20)

2 { [ ]} ( )Re i q
222 2 23 14 33

2
44r r kr

g
r rW= - + + +o u u u u

 ( )22 22 12 11 32 33 42 44n n r n r n r n r+ - + + + , (21) 

2 { [ ]}Re i33 1 13 2 23 33 43 44r r r g r n rW W= + - +lo u u , (22)

2 { [ ]} ( )Re i q q
244 1 14 2 24

2 2
44r kr r

g
k rW W= + - +o u u uu u u

 ( )44 44 34 33n n r n r+ - + , (23)

[ ]i q* *
12 1 32 2 13 1 42 2 14r r r k r rW W W W= - + -*uo u u u u u u

 ]r ,[i 12 12d G+ - l u   (24)

where g' = g + n – n33; G ' 12 = G12 + n – cohnuul ; G ' = G + n are decay 
rates modified due to collisions; and d = D2 – D1 is the two-
photon detuning. The arguments z and t are omitted.

The change in the optical coherences along the coordinate 
can be neglected, since they are destroyed in each collision, 
and the mean free path of atoms is assumed to be much 
shorter than the ensemble length. Thus, the gradients in equa-
tions (14) – (17) also vanish.

Due to the presence of terms ~kgu, which take into 
account the Doppler frequency shift, the transition to the 
reduced elements by integrating equations (14) – (17) is impos-
sible. In this regard, the optical coherences from these equa-
tions are first expressed in terms of quadratures by the method 
of undefined coefficients and only then are they integrated 
over the velocities:

( ) [ ( ) ( ) ( ) ( )]i dt t t t t t* *
g

t
g g3

0
2 2 1 1r r rW W= - +l l l l lu u uy

 
3

( ) [ ( ( ) ) ( )]expd iM k t tg guu u D G# - - + -
3-

l ly , (25)

( ) [ ( ) ( ) ( ) ( )]i dt t q t t t t* * *
g

t
g g4

0
2 2 1 1r r k rW W= - +*l l l l lu u u u uy

3
( ) [ ( ( ) ) ( )]expd iM k t tg g34w uu u D G# - - - + -

3-

l ly .  (26)

The argument z will be omitted hereinafter. The dynamics 
of the system is considered from the moment t = 0, when the 
optical coherences are equal to zero, which determines the 
choice of the lower limit of integration over time.

The resulting velocity integrals are of the Gaussian type 
and are expressed analytically:

( ) ( ) ( ) ( )expi d it t
k

t t t t
2g

t T g
g3

0

2 2

#r
u

D G= - - - - + -l l l lu = Gy

 ( ) ( ) ( ) ( )t t t t* *
g g2 2 1 1r rW W# +l l l lu u6 @, (27)

( ) i dt tg
t

4
0

r = - lu y

( ) ( ( ) ) ( )exp i
k

t t t t
4
T g

g

2 2
2

34#
u

wD G- - - - + -l l l= G

 ( ) ( ) ( ) ( )q t t t t* * * *
g g2 2 1 1r k rW W# +l l l lu u u u6 @.  (28)

Substituting (27) and (28) in (20) – (24), we obtain a system 
of homogeneous Volterra integro-differential equations of 
the first kind, which allows further numerical solution. 
However, due to the computational complexity of this sys-
tem, we will use the following approximation. Since the ker-
nels of the integrals in (27) and (28) are exponents oscillating 
and decaying with time, by neglecting the change in the 
sought-for functions at the times of such oscillations [62], we 
can move them outside the integrals at the time correspond-
ing to the upper limit of integration. Then, after expressing 
the integrals explicitly, we obtain:

( ) ( ) ( )it
k

t t* *
g

j T
g g3 20 2 10 1

pr
u

r rW W=
-

+u u u^ h

 ( )exp
i

w
k

k
t t

4g T

g g T
g

2 2
2

u

uG D
G D#

-
- - + +

l
le eo o= G)

 iw
k

t
k

i

2
g T

g T

g
#

u

u

G D
+

-l
e o3, (29)

( ) ( ) ( )it
k

q t t* *
g

j T
g g4 20 2 10 1

pr
u

r k rW W=
-

+* *u u u u u^ h

 
( )

exp
i

w
k

k
t

4g T

g g T34
2 2

2

u

w uG D
#

- -
- -

l
e eo =)

( ( ))
( )

i
i

t w
k

t
k2g

g T

g T

g
34

34
w

u

u

w
G D

G D
+ + - +

- -
l

l
eo oG 3,  (30)

where w(z) = exp(– z2) [1 – erf(–iz)] is the Faddeeva function; 
and

( )experf dz z z2 z 2

0p
= -y

is the error function.
After substituting (29), (30) into (20) – (24), we obtain a 

system of ordinary differential equations of the first order.
To establish the coordinate dependences of the fields, we 

use the truncated equation for their complex amplitudes in a 
nonmagnetic isotropic medium with a nonzero vector of mac-
roscopic polarisation P(z, t):

¶
¶

¶
¶ { [ ( )]expi i

z c t
k E t k z1
1 1 1 1w+ - -c m

 
¶
¶[ ( )] . .}expi i c ck E t k z

c t
P2

2 2 2 2 2 2

2pw+ - - + = .  (31)

We calculate the macroscopic polarisation of the medium 
as the quantum-mechanical average of the dipole moment per 
unit volume
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( , ) ( )SpP z t n da r= t t

 ( , ) [ ( )] . .exp i c cn z t d t k z
,

a ge eg
g e

g gr w= - +u/ ,  (32)

where the averaging is performed over the internal degrees of 
freedom of the atom and over its translational velocity, rather 
than over its coordinate, since we are interested in the polari-
sation of the medium in an infinitely small neighbourhood of 
the point z.

After substituting (32) into (31), assuming slow changes in 
the amplitudes of the density matrix elements (¶ ¶/ zgeru  <<  
kg geru , ¶ ¶/ tgeru  <<  g gew ru ), we multiply both sides of the 
resulting equation sequentially by both complex exponents 
exp[i(wgt – kgz)] and again use the rotating wave approxima-
tion. As a result, we obtain

¶
¶

¶
¶

2 ( )i
z
E

c t
E

n k d1
a

1 1
1 31 31 41p r kr+ = +u uu , (33)

¶
¶

¶
¶

2 ( )i
z
E

c t
E

n k d q1
a

2 2
2 32 32 42p r r+ = +u uu .  (34)

Let us neglect the changes in the field amplitudes at the 
times of flight by the photon over the ensemble length, which 
will allow us to neglect the second terms in the left-hand sides 
of (33) and (34). We finally write 

¶
¶ 2 | |

( )
i

z
n k da1 1 31

2

31 41
'

p
r kr

W
= +u u u , (35)

¶
¶ | |

( )
i

z
n k d

q
2 a2 2 32

2

32 42
'

p
r r

W
= +u u u  (36)

in terms of Rabi frequencies

3. Discussion of the results

The consistent solution of equations (20) – (24) after substi-
tuting (29) and (30) into them together with (35) and (36) 
allows one to obtain information both about the evolution 
of the quantum state of the ensemble along its entire length, 
and about the change in the field amplitudes as they pass 
through the medium for arbitrary waveform input laser sig-

nals. In our work, we study the features of the behaviour of 
CPT resonances, which are detected by two rectangular 
pulses separated in time by a dark pause Td, as, for example, 
in Ref. [35].

The first pump pulse has a duration tp sufficient to estab-
lish a stationary CPT state in the ensemble (tp >>  / j0

2g W ). The 
second short pulse of duration t detects the system in the CPT 
state.

Let us discuss the results of the numerical solution of the 
system in question with the given boundary condition. First 
we analyse the process of field absorption by the medium 
towards the end of the interrogation pulse.

As can be seen from Fig. 2, the intensities of the fields 
decrease exponentially with penetration into the medium. The 
decrease is faster if the temperature of the absorbing medium 
is higher, since the concentration of the saturated vapour of 
the active medium in the gas cell increases with increasing 
temperature. In the considered model, this is taken into 
account by introducing the given empirical dependence of the 
concentration of active atoms on temperature [63]:
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It should be noted that this dependence remains valid only in 
the temperature range from 298 to 550 K.

At any temperature in the range under consideration, the 
field experiences stronger absorption at a nonzero two-pho-
ton detuning (Fig. 2b) rather than at a zero detuning (Fig. 2a), 
which is a consequence of the coherent trapping of atoms in 
the ground state.

Let us now see how the intensities change with increasing 
temperature after passing through the medium at various 
detunings (Fig. 3).

With an increase in temperature, resonances undergo 
transition into the region of lower intensities. Due to the 
absorption effects mentioned above, at high temperatures 
and detunings outside the reference resonance, the intensity 
decreases more strongly (Fig. 3a). The amplitude of the refer-
ence resonance due to absorption increases up to a tempera-
ture T » 45 °С, after which absorption leads to its decrease 
(Fig. 3b).
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Figure 2. (Colour online) Dependences of the radiation intensity at the end of the interrogation pulse, referred to the field intensity at the entrance 
to the medium, on the relative penetration depth at different temperatures T for (a) d = 0 and (b) p/Td; ma = 87 amu, mbuf = 28 amu, nbuf = 1019 cm–3, 
g = 107 s–1, G = g/4, G12 = 100 s–1, D1 = d/2, D2 = – d/2, h = 0.01, Td = 5 ms, w34 = 10g, t = 10g–1, q̃ = 0.5, k̃ =1.
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Figure 4a shows the temperature dependences of the shift 
of the reference resonance maximum S relative to the zero of 
the two-photon detuning. With increasing temperature, the 
shift increases in a somewhat nonmonotonic manner. The 
slowest change occurs in the initial interval from 30 to 45 °С, 
where the shift decreases. In this case, the dependences of this 
shift on the frequency of hyperfine splitting of the excited 
state w34, as in the case of a thin medium, have the form of a 
dispersion contour (Fig. 4b). It is noteworthy that at a tem-
perature in the vicinity of T » 55 °C, the shift changes its sign 
regardless of the value of w34. It is also logical that at w34 ® 0 
or w34 ® ¥ we have a situation similar to that arising in the 
L-system, and the shift of the CPT of the resonance will be 
equal in this case to zero. On the contrary, when the excited 
state is nondegenerate (especially in the region 200g < w34 < 
800g), we are dealing with a more complicated situation. In 
this case, the shape of the CPT resonance can become asym-
metric [64, 65] and a light shift can occur, which depends on 
temperature in a nontrivial way.

It can be seen from Fig. 5a that with an increase in the 
buffer gas concentration nbuf, the amplitude of the resonances 
increases. Thus, the light shift changes in a nonmonotonic 
manner and reaches its maximum value at nbuf < 4 ´ 1018cm–3 
(Fig. 5b), and at low concentrations of the buffer gas, the 
resonance shape becomes more asymmetric. Note that the 

asymmetry of the shape is possible only for systems with non-
unity coefficients ku  and qu .

Let us now analyse the effect of external laser radiation 
parameters on the resonance shape.

With an increase in the Rabi frequencies of external fields, 
the amplitudes of the resonances increase, and the widths 
slightly decrease, while being at the same intensity level 
(Fig. 6a). Thus, by increasing the Rabi frequency of external 
fields, it is possible to effectively increase the quality factor of 
resonances in intensity. However, the solution to the problem 
in question does not allow the behaviour of the system to be 
analysed in the Rabi frequency range outside the range of 
applicability of the adiabatic approximation W <<  g' ~ 
107 rad s–1. The shift of the reference resonance with a change 
in W becomes nonmonotonic, reaching a maximum value at 
the higher Rabi frequencies, the higher the temperature of the 
active medium (Fig. 6b). At a certain temperature and suffi-
ciently low W, an additional dip appears in the reference reso-
nance, associated with a relatively strong absorption of fields 
with lower amplitudes, which makes it difficult to determine 
the magnitude of the shift S. In this regard, in Fig. 6b, the 
curves for temperatures of 60 and 55 °C are interrupted at 
those values of W at which a side minimum begins to appear.

Figure 7 shows how the resonance shape changes with an 
increase in the duration of the dark pause. The widths and 
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amplitudes of resonances decrease (Fig. 7a), and the shift 
behaves in a nonmonotonic manner (Fig. 7b). In particular, a 
change in the sign of the light shift is observed. In this case, 
the lowest sensitivity of the shift to temperature is achieved at 
Td » 1.2 and 10 ms.

4. Conclusions

Based on the density matrix method in the Wigner representa-
tion, we have developed a consistent theory of interaction of 
bichromatic laser radiation with an optically dense medium 
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buffer gas concentrations nbuf at a temperature T = 45 °C, as well as (b) dependences of the shift of the reference resonance on nbuf at different tem-
peratures; w34 = 300g, the cell length L = 1 cm, other parameters are the same as in Fig. 2.
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of alkali atoms having a nonzero temperature. The original 
system of integro-differential equations in partial derivatives 
has been reduced by a number of approximations to a system 
of ordinary differential equations of the first order. As a result 
of numerical modelling performed on the basis of this theory, 
resonances of coherent population trapping, detected by the 
Ramsey method, have been calculated. It has been shown that 
in an optically dense medium, the light shifts of the CPT reso-
nance under pulsed pumping have a nontrivial dependence. 
The influence of the hyperfine splitting of the excited level, 
concentration of active atoms, temperature, and duration of 
the dark pause on light shifts has been analysed.
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