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Abstract.  By the example of an optical gyroscope scheme, a new 
method for improving the accuracy of phase measurements is con-
sidered. In the rotation-recording Mach – Zehnder interferometer, 
a two-mode squeezed vacuum is used as an input state. This does 
not allow realising the traditional scheme, since the average value 
of the difference signal at the output is always zero. However, it is 
shown that information about the magnitude of the rotation angu-
lar velocity of the instrument reference frame is contained in the 
noise level of the difference signal. The possibility of reaching the 
Heisenberg limit of the measurement accuracy is demonstrated.

Keywords: optical gyroscope, two-mode squeezed vacuum, Mach –
Zehnder interferometer, measurement accuracy.

1. Introduction 

It is known that the accuracy of determining a physical 
parameter (e.g., the phase j) can be increased by repeating 
the measurement procedure and averaging the results. In this 
case, the variance of the measured parameter decreases as 
/ N1 , where N is the number of repeated measurements. If, 

when measuring j by quantum optical interferometry, a state 
with an average number of photons áN ñ is used and  Dj =
1/ G HN , then this corresponds to the so-called standard 
quantum limit (SQL) of sensitivity. The simplest version, 
demonstrating SQL, is a scheme using a Mach – Zehnder 
interferometer (MZI) with a coherent Glauber state at the 
input. The complete measurement effectively decomposes 
into separate elementary procedures, each involving a single 
photon. With a more subtle use of quantum effects, e.g., when 
preparing states of a special type that have no classical ana-
logues, it is possible to achieve the so-called Heisenberg limit 
(HL) of accuracy: Dj = 1/áN ñ, which is the goal of quantum 
metrology [1]. It is possible to overcome SQL in the MZI 
scheme with a squeezed vacuum state in the second input arm 
of the interferometer [2]. However, the Heisenberg limit is not 
reached in this case, since Dj = 1/áNñ3/4. One of the ways to 
achieve HL is to prepare entangled states of the input modes. 

The physical foundations of this approach are described in 
Refs [3, 4]. 

Among the highly non-classical radiation states, whose 
preparation technology is sufficiently developed, the state of 
a two-mode squeezed vacuum

| ( ) | ,TMSV p r n nn
n 0

H H=
3

=

/ 	 (1) 

is known as a certain superposition of the Fock states of 
two modes. Here r is the squeezing parameter, and pn(r) = 
cosh–2(r)tanh2n(r). The properties of this state and the meth-
ods of its preparation are considered, e.g., in Ref. [5]. 
Unfortunately, the direct use of |TMSVñ in the traditional 
scheme of phase measurements from the average intensity dif-
ference of the output modes is impossible, since the average 
difference is insensitive to phase shifts and is simply zero [6]. 
This circumstance prompts the search for non-standard mea-
suring procedures at the MZI output. Anisimov et al. [7] pro-
posed to measure the parity of the number of photons in one 
of the interferometer output modes. It was shown that this 
allows the Heisenberg limit to be reached and even surpassed 
in a certain sense: 

1/ ( ) 1/2 1G H G H G HjD = +N N N .

Here we propose an alternative way of using state (1) in phase 
measurements oriented at the noise level of the intensity dif-
ference at the MZI output. It is shown that under certain con-
ditions, HL can be reached. The possibility of obtaining such 
a level of accuracy, as well as the required range of the param-
eter r entering |TMSVñ, is determined by the magnitude of the 
measured phase. The results obtained are applicable to mea-
suring phases of different nature. We have chosen a specific 
actual problem of gyrometry, namely, measuring the angular 
velocity of the Earth’s rotation around its axis by determining 
the relevant Sagnac phase. The corresponding scheme is con-
sidered in Section 2, where the existence of a regime with the 
attainment of the Heisenberg limit is proved. In Section 3, the 
limits of the accuracy of phase measurements, which are 
attainable with a two-mode squeezed vacuum state, are stud-
ied from a general point of view. The dependence of the 
Cramér – Rao bound on the parameter r is obtained, and the 
optimality of the selected regime is shown. Conclusions sum-
marise the results and outline the immediate goals of further 
research.

2. Gyroscope model 

Traditional optical gyroscopes (gyrometers) measure the 
Sagnac phase generated by the rotation of the instrument’s 
frame of reference [8]. We used the data available in the litera-
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ture on the parameters of modern aircraft fibre-optic gyrom-
eters [9]. Instead of the traditional scheme of a gyroscope with 
a Sagnac interferometer, we use a scheme based on a 
Mach – Zehnder interferometer (Fig. 1) with a geometric 
structure similar to that of a Sagnac interferometer [9]. We 
assume that the MZI is formed by two optical fibres with a 
length of L = 105 cm, wound oppositely on a coil with a radius 
of R = 5 cm, the radiation frequency being w = 1015 s–1. The 
angular velocity of the Earth’s rotation is  » 7.27 ´ 10–5  s–1. 
The corresponding Sagnac phase is

c
RL4

S 2

wF W
=  » 16.17 ´ 10–5,	 (2) 

where c is the speed of light. The phases ± f in the internal 
arms of the interferometer (see Fig. 1) with the indicated 
direction of rotation are equal to ±FS /4. 

In the Heisenberg picture, which is used to analyse the 
gyrometer operation, the operators of photon modes are 
transformed in different parts of the scheme shown in Fig. 1. 
The nonlinear medium performs the transformation

r r( ) ( )cosh sinha a bin in0 = +
@t t t ,  r( ) ( )cosh sinhb r b ain in0 = +

@t t t .	(3)

The state of radiation in the Heisenberg picture is vacuum 
with respect to the operators aint  and bint  and remains 
unchanged. With respect to the pair a0t  and b0

t , this state turns 
out to be the state |TMSVñ from Eqn (1). The vectors |n, nñ 
entering Eqn (1) are actually 7| |n na b0 0H H . The beam splitters 
in the interferometer are assumed to be balanced:  

( ) /a a b 20 0= +t t t , and b =t  ( ) /a b 20 0- +t t . The ordered pairs  
( , )b a1 1
t t  and ( ( ), ( ))a bf ft t  are related in a similar way, where  
( ) ( )exp ia af f=t t  and ( ) ( )exp ib bf f= -t t . This gives the form 

of relation between operators at the MZI input and output:

f f( ) ( )cos sinia a b1 0 0= +t t t ,   f f( ) ( )sin cosib a b1 0 0= +t t t .	(4) 

Relations (3) and (4) allow the operator of the output differ-
ence signal n a a b b1 1 1 1 1= -@ @t t t t t  to be expressed in terms of aint , 
bint  and their Hermitian conjugates:

(2 ) (2 )cos sinin n min1 f f= +t t t .	 (5) 

Here 

n a a b bin in in in in0 -
@ @t t t t t ,

(2 )( )coshm r a b b ain in in in0 -
@ @t t t t t

	 (2 )( )sinh r a b a bin in in in2

1 2 2 2 2+ - - +
@ @t t t t .

All averagings á…ñ are then calculated over the vacuum state 
of the modes of aint  and bint . The obvious result 0n1G H=t  cor-
responds to the impossibility of using |TMSVñ (see Section 1) 
within the framework of the traditional measurement scheme 
orientated at the dependence of n1G Ht  on f. 

The quadratic variance of the difference signal (noise) 
appears for nonzero values of f:

( ) (2 ) ( ) ( )sin sinh sinn n m r2 21
2

1
2 2 2 2 2G H G H G Hf fD = = - =t t t .	(6) 

To estimate the measurement accuracy, it is necessary to 
know the variance of the noise level. In the expression for the 
mean value of n1t  to the fourth power, 

(2 ) (2 ) (2 )sin cos sinn m mn min1
4 4 4 2 2 2G H G H G Hf f f= -t t t t t

	 (2 ) (2 )cos sini m n m mn min in
3 2 2G H G Hf f- +t t t t t t^ h,	 (7) 

only the first two terms turn to be nonzero. As a result of 
rather lengthy calculations, we arrive at the relation

( ) 4 (4 ) (2 ) (2 )cosh sinh sinn r r1
2 2 2 4G H fD =t

	 (2 ) (4 )sinh sinr2 2 f+ .	 (8) 

Two terms on the right-hand side of Eqn (8) demonstrate a 
different dependence on r and f. In the case of small values of 
f, which is of primary interest, the first term is proportional 
to f4, and the second to f2. The first term contains the factor 
cosh(4r), which can compensate for the additional second 
power of f. If, however, the condition

cosh(4r) <<  
4
1
2f

	 (9) 

is satisfied, the second term in Eqn (8) turns out to be the 
major one. In this case, from the relation ( / )d dn1

2G H f fD =t  
( )n1

2 2G HD t  it follows that

( )sinh r2 2
1fD = .	 (10) 

The average number of photons áN ñ in the state |TMSVñ is 
2sinh2 (r). For  r ³ 1 

Df » 
N2
1
G H

.	 (11) 

If we take into account that the magnitude of the equivalent 
phase shift when it is localised in one arm of the MZI is equal 
to 2f, then relation (11) is indicates that the Heisenberg limit 
of accuracy has been reached. 

3. Accuracy limit of phase measurements  
with |TMSVñ 
Estimate (10) for the accuracy of f measurement should be 
compared with the corresponding Cramér – Rao bound [10]. 
This provides information about the potential capabilities of 
the |TMSVñ state for measuring the phase in quantum metrol-
ogy, not only in the proposed scheme, but also in any other 
one. As far as we know, there is no such analysis in the litera-
ture. It is convenient to start by calculating the classical Fisher 
information for the Fock state |n, nñ at the MZI input. Using 
the relations inverse to (4), we can find the form of the state at 
the output of the interferometer:
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Figure 1.  Schematic of a gyroscope based on a Mach – Zehnder inter-
ferometer. The rectangular box denotes a nonlinear medium where a 
two-mode squeezed vacuum state is generated.
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n
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We are interested in the probability of fixing a certain abso-
lute value of the difference 2|n – k| of the number of photons 
in modes a1 and b1. This probability is the sum (for n ¹ k) of 
two equal probabilities ( )P k( )n

f  and ( )P n k2( )n
-f  of detecting 

the modes in the states | k, 2n – k ñ and |2n – k, k ñ, respectively. 
From Eqn (12) we obtain an expression for ( )P k( )n

f :

( )
( !)

!( ) !
P k

n

k n k2( )n

2
=
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2

f f# -- - + + -

=

l l l l l

l

e o/ .	 (13) 

The classical Fisher information for the state |Yf(n)ñ, as the 
quadratic variance of the corresponding risk function [10], is 
defined as

4
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# f f + -+ - - ll
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Fisher’s quantum information is not related to a certain type 
of measurement. For a pure state, such as |Yf(n)ñ, it takes the 
form [10]: Fq

(n) = 4 áYf’ (n)|Yf’ (n)ñ + 4 áYf’ (n)|Yf(n)ñ2, where the 
prime denotes differentiation with respect to f. In this expres-
sion, only the first term turns out to be nonzero. Its calcula-
tion leads to an expression identical to (14), i.e.,  
F F F( ) ( ) ( )

q cl
n n n
0 = . 

Since when the difference signal is detected at the MZI 
output, information about the total number of photons inevi-
tably appears, the various terms of the superposition (1) make 
an independent contribution to the complete Fisher informa-
tion: 

F p F ( )n
n

n 0

=
3

=

/ ,	 (15) 

and F turns out to be a function only of r and does not depend 
on f. This means that the Cramér – Rao inequality Df ³ F  –1/2 
gives a uniform in f lower bound on the measurement inac-
curacy. However, with respect to r, there is an optimum ropt » 
3.8 (Fig. 2), near which inequality (9) is fulfilled. At the same 
time, obviously, the Heisenberg limit regime takes place. 

4. Conclusions 

1. A measurement scheme is proposed, in which a two-mode 
squeezed vacuum state is used. This state arises in a spontane-
ous parametric process. The technology for obtaining the 
state |TMSVñ is already quite well developed. The single-
mode squeezed vacuum state, also used in quantum metrol-
ogy [2], is, in a sense, a secondary product and is obtained by 
transforming the two-mode squeezed vacuum state [5]. 

2. The coherent nature of the state |TMSVñ, which makes 
it an entangled state of two input modes, turns out to be 
unimportant. The separable state 

|nG| | |p n n nn a b
n 0

0 07H H Gr =
3

=

t /  

could be used as well. For this reason, the proposed scheme is 
resistant to possible disruptions in the relative phases of the 
terms in Eqn (1) for |TMSVñ. The main necessary property of 
the input state is the equality of the number of photons in 
both modes. 

3. The orientation towards measuring the noise level in 
the output difference signal seems preferable to measuring the 
parity of the number of photons in one of the outputs, which 
is proposed in Ref. [7]. Note also that in our scheme there is 
an effect of a slight excess above the Heisenberg limit of accu-
racy, similar to that stated in [7], since in addition to the main 
term demonstrating the Heisenberg limit, the denominator of 
Eqn (10) initially contained positive terms, which were ‘dis-
carded’ due to their relative smallness. 

The immediate goal of further research is to calculate the 
correlation function áW (t2)W (t1)ñ of the measured angular 
velocity values. This will allow determining the Allan devia-
tion calculated from the measurements of the relative bearing. 
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Figure 2.  Dependence of Fisher information on the squeezing parame-
ter r.


