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Abstract.  We report a comparative analysis of the limits of laser 
cooling of atoms in light fields both on the basis of a numerical solu-
tion of the quantum kinetic equation for the atomic density matrix, 
which makes it possible to accurately take into account quantum 
recoil effects during the interaction of atoms with field photons, and 
within the framework of the semiclassical approach using various 
forms of the Fokker – Plank equation. The analysis allows one to 
outline the limits of applicability of the semiclassical approach, as 
well as to choose an unambiguous form for introducing the diffusion 
contribution to the Fokker – Planck equation in the semiclassical 
description of atomic kinetics.

Keywords: laser cooling of atoms, semiclassical approach, quantum 
recoil effects.

1. Introduction

Cold atoms play a key role in modern atomic physics and are 
the main tool for high-precision measurements. The most 
impressive progress has been made in the field of frequency 
standards based on cold atoms and ions with a relative uncer-
tainty of 10–18 and better [1 – 6]. High-precision atomic inter-
ferometers are widely used in modern precision measurements 
for fundamental and applied research, such as measurements 
of the fine structure constant [7, 8], Newton’s gravitational 
constant [9, 10], tests of general relativity [11], and gravity 
measurements [12, 13].

Laser cooling of atoms by a resonant light field is based 
on the fundamental processes of exchange of momentum and 
energy of atoms with field photons during their interaction. 
To date, there are many approaches to describe the problem 
of laser cooling, which methodologically can be divided into 

quantum and semiclassical. Quantum approaches (see, for 
example, [14 – 20]) make it possible to accurately take into 
account the processes related to changes in the internal and 
translational degrees of freedom of atoms and their mutual 
correlation in the interaction with field photons; however, 
they require significant computational resources.

Semiclassical approaches are based on a number of 
approximations and allow one to describe the process of laser 
cooling of atoms in terms of the force acting on atoms from 
the side of the light field and its fluctuations caused by a jump 
change in the momentum of atoms upon interaction with field 
photons (see, for example, [21 – 23]). In some cases they make 
it possible to obtain analytical expressions for the forces, dif-
fusion coefficients, and limiting temperatures of laser cooling 
of atoms [21 – 25]. Force fluctuations lead to heating and 
actually determine the minimum achievable atomic tempera-
tures. In analysing the kinetics of atoms in light fields, these 
fluctuations are described by the diffusion coefficient D in the 
Fokker – Planck (FP) equation for the distribution function 
of atoms in the phase space W [26]. Statistical approaches to 
solving the FP equation, based on the averaging of different 
trajectories of atoms, model these fluctuations by adding a 
Langevin equation to the force of a random momentum-
dependent variable [26 – 29].

Because in the processes of absorption/emission of field 
photons the atomic momentum p instantly changes to a small 
but finite value  |p| = 'k (the momentum of the field pho-
ton), and the force acting on the atom depends on the speed 
of the atom, the question arises: At which value of the momen-
tum should a random addition to the force be determined? 
This uncertainty in the choice of the momentum value is 
called the Itô – Stratonovich dilemma [26, 27, 30, 31], and in 
the framework of the FP equation it determines the differ-
ences in the form of the diffusion contribution [26]:

¶
¶ ( )
p
DW2

2

  or  ¶
¶

¶
¶

p D pWd n.

Note that under the conditions of the semiclassical 
description of the kinetics of atoms in light fields, namely, at 
an extremely small value of the photon recoil momentum to 
the width of the momentum distribution of atoms, 'k << Dp, 
as well as the smallness of the recoil energy received by the 
atom in the processes of absorption/emission of field photons 
'wR = k22' /2M (M is the mass of the atom) to the natural 
linewidth of the resonant optical transition g used for laser 
cooling (i.e., under conditions of a small recoil parameter 
eR = wR/g << 1), a random addition to the force, determined 
by the diffusion coefficient, has a weak dependence on veloc-
ity, and therefore, the variability in the choice of the diffusion 
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term in the FP equation has an insignificant effect on the 
results of numerical analysis [31, 32]. However, the real values 
of the recoil energy for atoms cooled by a light field in combi-
nation with the use of narrow optical transitions do not 
always correspond to the condition of the extreme smallness 
of the parameter eR [33]. Also, under conditions of sub-Dop-
pler laser cooling, the temperature can reach several recoil 
energies, which leads to rather narrow distributions of atoms 
in the momentum space and is characterised by sharp depen-
dences of the force and diffusion coefficient on the atomic 
velocity [34, 35]. Under these conditions, the differences in the 
choice of the diffusion contribution in the FP equation 
become most significant.

In this paper, we investigate the Itô – Stratonovich 
dilemma by directly comparing the results for the problem of 
laser cooling of atoms, obtained in the framework of various 
semiclassical approaches to the Itô – Stratonovich problem, 
with the results obtained on the basis of the exact quantum 
approach [18 – 20]. The performed analysis of the kinetics of 
atoms with different recoil parameters eR made it possible to 
outline the limits of applicability of the semiclassical approach 
to the problem of laser cooling of atoms.

2. Itô vs. Stratonovich dilemma
in the problem of laser cooling

The kinetics of atoms in an external light field is described by 
the quantum kinetic equation (QKE) for the atomic density 
matrix

¶
¶ [ , ] { }i
t 'r r rH G= - +t t t t t ,	 (1)

containing contributions determined by the Hamiltonian Ht  
of an atom in an external electromagnetic field and the non-
Hamiltonian evolution { }rGt t  as a result of decoherence of 
quantum states of an atom upon interaction with the external 
environment or as a result of spontaneous emission of pho-
tons (see, e.g., [33]). The presence of two main conditions – 
the smallness of the recoil momentum to the momentum dis-
tribution of atoms, 'k/Dp << 1, and the smallness of the 
parameter eR = wR/g  << 1 (it is determined, among other 
things, by the mass of the atom and the natural linewidth of 
the optical transition used for laser cooling) – makes it possi-
ble to separate fast processes of ordering in terms of internal 
degrees of freedom from slow processes associated with the 
translational motion of an atom and reduce Eqn (1) to the FP 
equation for the distribution function of atoms in the phase 
space ( , , ) { ( , , )}TrW r t r tn r n= t  (see, for example, [22, 36 – 39]). 
Here the trace is taken over the internal degrees of freedom of 
the atom. For a one-dimensional laser cooling problem, when 
the light field used for laser cooling is a combination of coun-
terpropagating monochromatic waves with a frequency w 
along the z axis with polarisations e1 and e2,

E(z, t) = e1E0eikze– iwt + e2E0e– ikze– iwt + c.c.,	 (2)

the FP equation describing the kinetics of atoms in the semi-
classical approximation is written in the form

¶
¶

¶
¶
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(for example, in [21 – 23, 36, 38 – 41]) or in the form

¶
¶

¶
¶

¶
¶( , , ) ( , ) ( , , )t M

p
z W z p t p F z p W z p t+ = -a k

	 ¶
¶

¶
¶( , ) ( , , )p D z p pW z p t+ 	 (4)

(see, for example, [32, 42, 43]). The kinetic coefficients of the 
FP equation are F(z, p), i.e. the force acting on the atom, and 
D(z, p), i.e. the diffusion coefficient divided into the sum of 
contributions. These are the contributions of induced diffu-
sion D(i) (z, p) associated with the fluctuation of the force in 
the processes of stimulated absorption/emission of field pho-
tons, and spontaneous diffusion D(s)(z, p) associated with the 
fluctuation of the momentum of atoms during spontaneous 
emission of photons [22, 36 – 39].

The differences between these forms of writing the FP 
equation are most clearly manifested in statistical approaches 
that simulate laser cooling of atoms in light fields, where the 
distribution function is obtained by statistical averaging over 
various trajectories of atoms, which are determined by the 
classical equations of motion

M( , ) ( , ) ( ), /d
d

d
d

t
p

F p z D z p t t
z p2 x= + = 	 (5)

with noise addition to force ( , ) ( )F D z p t2d x= . The latter is 
determined by a random variable x(t), which has a normal 
distribution with zero mean áx(t)ñ and the correlation function

( ) ( ) ( )t t t tG Hx x d= -l l .	 (6)

From a mathematical point of view, the equation of motion 
(5) with a d-correlated noise term is not completely defined 
[26, 27]. Since the diffusion coefficient D, which determines 
the fluctuation of the force, depends on the velocity of the 
atom, the average value of the stochastic contribution  

( ) ( )D p t2G Hx  is not equal to zero, which leads to a noise shift 
of the particle trajectory. In this case, it is necessary to deter-
mine at what value of the momentum the noise addition to the 
force dF is determined in the equation of motion (5): before 
adding a random variable (a time jump change in momentum), 
which corresponds to equation (3), or after adding a random 
contribution, which corresponds to (4). This uncertainty is 
known as the Itô – Stratonovich dilemma [26, 27, 30, 31].

Note that the differences in the forms of writing (3) and 
(4) can be reduced to the so-called noise or quantum correc-
tion to the force

¶
¶( , ) ( , ),f z p p D z pd = 	 (7)

which, however, under the conditions of applicability of the 
semiclassical approach, is extremely small, df/F -  eR << 1. 
Indeed, the FP equation can be obtained directly from the 
QKE for the atomic density matrix (1) by expanding the field 
photon recoil momentum in smallness, i.e., i.e. in the param-
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eter 'k/Dp up to second order terms. Under the conditions of 
the extreme smallness of the parameter eR (eR << 1), both 
approaches are equivalent, since the contributions of ~eR are 
neglected in the process of QKE reduction to the FP equation 
[22, 36 – 39]. However, if the recoil parameter eR is not suffi-
ciently small, the differences between the two approaches can 
be significant. In this case, as noted in [42, 43], the results of 
Eqn (4) in some cases, neglecting the effects of localisation of 
atoms in the optical potential, are in better agreement with 
the results of the quantum approach, and for describing laser 
cooling, expression (4) looks more preferable . In Section 3, 
we performed a detailed comparison of the results of the semi-
classical representation of the kinetics of atoms, obtained tak-
ing into account the nonlinear dependence of the kinetic coef-
ficients of the FP equation, force, and diffusion on the veloc-
ity and also taking into account the localisation of atoms in 
the optical potential, with the results obtained on the basis of 
the numerical solution of the QKE for atomic density matrix 
(1) for atoms with different parameters of eR. This compara-
tive analysis will make it possible to single out the form of the 
FP equation that best corresponds to the results of quantum 
calculations, as well as to outline the limits of applicability of 
the semiclassical approach.

3. Comparative analysis of semiclassical 
and quantum approaches

Let us consider the problem of laser cooling of atoms in a 
monochromatic field of a light wave (2), resonant to a closed 
optical transition Jg ® Je, where Jg and Je are the total angular 
momenta of the levels of the ground (g) and excited (e) states. 
Polarisations of counterpropagating waves, e1 and e2, deter-
mine the spatial configuration of the cooling field. For exam-
ple, orthogonally polarised counterpropagating waves form 
the configurations of light fields most used in laser cooling 
problems: lin ^ lin configuration of the light field formed by 
counterpropagating waves with orthogonal linear polarisa-
tions, for example with e1 = ex, e2 = ey, and s+ – s configura-
tion formed by counterpropagating waves with orthogonal 
circular polarisations e1 = e+, e2 = e–. Cooling in fields gener-
ated by waves with the same polarisations e1 = e2 can in some 
cases [25, 39] be reduced to the results of a simple two-level 
model with levels that are nondegenerate with respect to the 
angular momentum projection.

The evolution of an ensemble of low density atoms, for 
which interatomic interactions can be neglected, is described 
by the QKE in the single atom approximation (1). The 
Hamiltonian Ht  is split into the sum of the contributions:

M
p

V2

2

0H H= + +t t t t ,	 (8)

where the first term is the kinetic energy operator; e0 'dH P= -t t  
is the Hamiltonian of a free atom in the rotating wave approx-
imation; d = w – w0 is the detuning of the field frequency w 
from the atomic transition frequency w0; and

, ,J Je e e; ;HGm mP =
n

t / 	 (9)

is the projection operator on the excited state levels |Je, mñ, 
characterised by the total angular momentum Je and the pro-
jection of the angular momentum m onto the quantisation 

axis. The last term Vt  in (8) describes the interaction of the 
atom with field (2). If field (2) is resonant to an electrodipole 
transition, the operator Vt  takes the form

( ) ( ),exp expi iV V kz V kz1 2= + -t t t 	 (10)

where

( ) ( 1,2),V de d e n2 2
0, 1

n n n
' 'W W= = =

!

v
v

v=

t t t/

and is determined by the polarisation vectors of the counter-
propagating waves and the vector operator of the dipole 
interaction dt , whose matrix components in the circular basis 
are expressed in terms of the Clebsch – Gordan coefficients; 
W is the Rabi frequency (see, for example, [33]).

Note that the stationary solution of QKE (1) for the 
atomic density matrix for a given polarisation configuration 
of the light field is characterised by three dimensionless 
parameters: the recoil parameter eR, the ratio of the field 
detuning to the natural linewidth d/g, and the ratio of the 
Rabi frequency to the natural linewidth W/g. Instead of the 
last parameter, which determines the light field intensity, it is 
convenient to use a quantity that characterises the depth of 
the optical level shift U0 and depends both on the light field 
intensity and detuning d:

( / )
.U 3 40 2 2

2'; ; ; ;d
d g

W
=

+
	 (11)

In particular, in the limit of low intensity of the cooling field, 
|W|2/(d2 + g2/4) << 1, and in the secular approximation, 
|d| >> g, the light shift U0 remains the only universal param-
eter characterising the stationary QKE solution [17]. We will 
also use this parameter to describe the laser field intensity, 
which, in particular, will allow us to compare the presented 
results with the previously obtained results [17] for the lin ^ 
lin configuration of the light field in the framework of the 
secular approximation.

Within the framework of semiclassical approaches, the 
problem of atomic kinetics described by QKE (1) for the 
atomic density matrix rt , which contains complete informa-
tion about the evolution of both internal and translational 
degrees of freedom, is reduced to the FP equation for the dis-
tribution function of atoms in the phase space W in one of 
selected forms [(3) or (4)]. The kinetic coefficients for the FP 
equation are obtained by expanding QKE (1) for the density 
matrix in terms of the small parameter /k p' D , i.e. the small-
ness of the ratio of the recoil momentum 'k to the momen-
tum distribution of atoms in the phase space Dp. The expan-
sion of the QKE for the one-dimensional problem has the 
form (see, e.g., [39])

¶
¶

¶
¶ ( , ) { ( , )}t M

p
z z p L z p( )0r r+ =t t ta k

	 ¶
¶

¶
¶{ ( , )} { ( , )}k p L z p k
p
L z p( ) ( )1 2 2
2

2
2' 'r r+ + g

t t t t 	 (12)

In particular, in the zeroth order in recoil effects, /k p' D  leads 
to the Bloch equation
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¶
¶

¶
¶ ( , , ) { ( , , )}t M

p
z z p t L z p t( )0s s+ =t t ta k 	 (13)

for the density matrix st  under the normalisation condition 
Tr{s}  = 1, which describes the evolution of the internal 
degrees of freedom of the atom. The form of the functionals 
L( )it  (i = 0, 1, 2) of the QKE expansion is given in [39]. 
Accordingly, the expression for the force acting on an atom in 
a light field,

( , ) { { ( , )}} { ( ) ( , )}Tr TrF z p L z p F z z p(1) s s= =t t t ,	 (14)

is the quantum mechanical average of the force operator  
¶ ¶( ) ( ) /F z V z z= -t t . Here the trace is taken over the internal 

states of the atom, and s(z, p) is the stationary solution of 
Eqn (13).

The diffusion coefficient is represented as the sum of two 
terms, D = D(s) + D(i). The spontaneous diffusion coefficient

( , ) { { ( , )}}TrD z p L z p( ) ( )s 2 s= t t 	 (15)

is due to the recoil effect during spontaneous emission of 
field photons; the induced diffusion coefficient D(i) is deter-
mined by the fluctuation of the force acting on the atom in the 
processes of stimulated absorption/emission of field photons 
(see, for example, [22, 39]). In the zeroth order in velocity, the 
expression for D(i) can be obtained using the first correction 
matrix method proposed by us [39]. Taking into account the 
nonlinear dependence on velocity for slow atoms, the expres-
sion for D(i) can be obtained using the approach presented in 
[36, 37]:

( , ) { ( ) ( , ) ( , ) ( )},TrD z p F z z p z p F z2
1( )i h h= - +t t t t 	 (16)

where the non-adiabatic correction matrix ( , )z pht  is deter-
mined by the first order in the expansion in smallness of the 
recoil momentum of the density matrix

¶
¶( , ) ( , ) ( , ) ( , ) ( , )z p z p W z p p z p W z p gr s h= + +t t t 	 (17)

and satisfies the equation

¶
¶ { }M

p
z L F F2

1( )0h h d s s d- = - +t t t t t% /% %
	 (18)

with the normalisation condition Tr{h}  = 0. The operator 
( )F F zd = -t%

 F(z, p) is the force fluctuation operator for an 
atom in a light field.

Additionally, we note that in the process of reducing the 
QKE to the FP equation in the semiclassical expansion in the 
smallness of parameter of the photon momentum 'k/Dp (12) 
uniquely determines the form of writing the diffusion contri-
bution of the spontaneous diffusion coefficient (15) in the 
form ¶ ¶/ ( )p D F2 2 ( )s . In this case, variability in the form of the 
choice of the diffusion contribution (3) or (4) arises only with 
respect to the induced diffusion D(i), the expression for which 
(16) is obtained by neglecting the smallness of the order of eR. 
As a result, due to the unambiguous notation of the diffusion 
contribution associated with the spontaneous diffusion coef-

ficient, a comparative analysis is required for the FP equation 
in form (3)

¶
¶

¶
¶

¶
¶( , , ) ( , ) ( , , )t M

p
z W z p t p F z p W z p t+ = -a k

	
¶
¶ ( ( , ) ( , )) ( , , )
p
D z p D z p W z p t2

2
( ) ( )s i+ + 	 (19)

and in the form

¶
¶

¶
¶

¶
¶( , , ) ( , ) ( , , )t M

p
z W z p t p F z p W z p t+ = -a k

	 ¶
¶

¶
¶( , ) ( , , )p D z p pW z p t( )i+

	
¶
¶ ( , ) ( , , ) .
p
D z p W z p t( )s
2

2

+ 	 (20)

In contrast to quantum approaches [14 – 19], which make 
it possible to obtain exact solutions for the atomic density 
matrix in a light field, semiclassical approaches, despite the 
used approximations, are of particular interest, since the 
expressions for the kinetic coefficients of the FP equations 
allow one to qualitatively judge various features in atomic 
kinetics, as well as to describe and interpret different physical 
mechanisms of laser cooling [21, 22, 24, 25]. The stationary 
solution of the FP equation for atoms in a light field in form 
(3) or (4), neglecting the effects of localisation of atoms in the 
optical potential generated by the light field, can be obtained 
from expressions averaged over the spatial period for the 
force  ( )F pr  and the diffusion coefficients ( )D pr :

( )
( )
( )

( ) / ( )exp dW p C
D p
D

F p D p p
0

=
p

3-

l l lr

r
r r_ iy 	 (21)

for the FP equation in form (3) and

( ) ( ) / ( )exp dW p C F p D p p=
p

3-

l l l lr r_ iy 	 (22)

for an equation in form (4). Here C and Cl are normalisation 
constants.

In our work, we analyse the limits of laser cooling by con-
sidering the numerical solution of FP equations (19) and (20), 
which will allow us to accurately take into account the effects 
of atomic localisation in the optical potential for atoms with 
different eR parameters. In addition, we note that the momen-
tum distribution of atoms in a cooling laser field in some cases 
turns out to be substantially nonequilibrium [44] and there-
fore, strictly speaking, cannot be described in terms of tem-
perature. In a number of cases, the shape of the resulting 
momentum distribution makes it possible to distinguish two 
fractions of atoms with different temperatures: a fraction of 
atoms with a narrow momentum distribution and having a 
sub-Doppler temperature, as well as a fraction with a signifi-
cantly higher temperature, the Doppler one [35]. Therefore, in 
this paper, as a quantitative estimate of the laser cooling of 
the entire atomic ensemble, we present the results for the aver-
age kinetic energy of cold atoms.
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3.1. Limits of laser cooling for a two-level model of an atom

The cooling of atoms in the field of a standing wave with uni-
form spatial polarisation can in some cases be reduced to the 
problem of laser cooling in the model of a two-level atom [45]. 
The two-level model for the problem of laser cooling was the 
primary approximation, and it has been studied quite well 
both in the framework of the semiclassical approach [21 – 23] 
and with full allowance for quantum recoil effects for atoms 
with different recoil parameters eR [46]. Here, we compared 
the data on the limits of laser cooling obtained on the basis of 
solutions of FP equations (19) and (20) taking into account 
the localisation effects and the numerical solution of QKE (1) 
based on the methods proposed by us in [18 – 20, 33] for atoms 
with different eR parameters (less than unity).

The results of the comparative analysis are shown in 
Fig. 1. First of all, we note that the results obtained on the 
basis of quantum and semiclassical approaches completely 
coincide for extremely small (10–3) values of the parameter eR 
(Fig. 1a). Note that a comparative analysis without taking 
into account localisation effects based on solutions (21) and 
(22) leads to underestimated results for the semiclassical 
approach with respect to the quantum one for the kinetic 
energy of cold atoms with an increase in the intensity of the 
light field (parameter U0) by ~20 % at U0 = 300'wR (Fig. 2). 
This is due to the action of ‘Sisyphus’ mechanisms of laser 

cooling of atoms, which, at the minima of the optical poten-
tial (corresponding to the maxima of the light field intensity) 
at red field detunings d < 0, lead to local heating of the atoms 
[22, 29]. The limiting values of the kinetic energy in low-inten-
sity fields correspond to the Doppler limit of laser cooling of 
atoms, achieved at the light field detuning d = – g/2, which 
corresponds to the atomic temperature /k T 7 20B D 'g=  [22]. 
For an equilibrium distribution, this temperature corresponds 
to the average kinetic energy / ( )E 7 40kin 'g= , which is equiv-
alent to E 175kin R'w=  for atoms with eR = 10–3 (Fig. 1a).

For atoms with a large (10–2) parameter eR (Fig. 1b), dif-
ferences begin to appear in the results obtained on the basis of 
quantum and semiclassical approaches in form (19) and (20). 
We note that at low light field intensities, one can observe the 
similarity of the results obtained for atoms with eR = 10–2 
and 10–3, which is a consequence of the ‘scale law’ noted by us 
in [46]. In this case, the results obtained using the semiclassi-
cal approach based on the FP equation in form (20) are in 
better agreement with the results of the numerical solution of 
QKE (1). This correspondence is also preserved for atoms 
with eR = 10–1 (Fig. 1c).

3.2. Sub-Doppler laser cooling in the field 
with the s+ – s– configuration

One of the most commonly used light field configurations 
with spatially nonuniform polarisation is the s+ – s– configu-
ration. In combination with a nonuniform magnetic field, it 
underlies the implementation of magneto-optical traps. For a 
comparative analysis, we consider the simplest model of an 
atom with levels Jg = 1 ® Je = 2 degenerate in the angular 
momentum projection, which exhibit sub-Doppler laser cool-
ing mechanisms [24].

The characteristic dependences of the average kinetic 
energy of cold atoms differ significantly from the results of 
the two-level model. Note that for atoms with extremely small 
(eR << 1) parameters, the average kinetic energy of atoms is 
below the Doppler limit, which is associated with the presence 
of sub-Doppler mechanisms of laser cooling, manifesting 
themselves in fields with a spatially uniform polarisation [24]. 
Nevertheless, even in the semiclassical limit (for atoms with 
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Figure 1.  (Colour online) Kinetic energy of cold atoms in units of the 
recoil energy as a function of U0 at various detunings of the light field 
for atoms with eR = (a) 10–3, (b) 10–2 and (c) 10–1, obtained within the 
two-level model of the atom (the light wave with uniform polarization). 
The solid curves show the results obtained based on the numerical solu-
tion of QKE (1), and the dotted and dashed curves show the results 
obtained in the framework of semiclassical approaches based on FP 
equations (19) and (20), respectively.
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Figure 2.  (Colour online) Kinetic energy of cold atoms in units of recoil 
energy as a function of U0 at various detunings of the light field for at-
oms with eR = 10–3, obtained within the two-level model of the atom. 
The solid curves show the results obtained on the basis of the numerical 
solution of QKE (1), and the dotted and dashed curves show the results 
obtained in the framework of semiclassical approaches based on FP 
equations (19) and (20) with expressions averaged over the spatial peri-
od for the force and diffusion, i.e. without taking into account the ef-
fects of atomic localisation in a light field.
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the extremely small parameter eR = 10–3), there are differ-
ences in the results obtained on the basis of the quantum and 
semiclassical approaches. They manifest themselves most 
clearly at small detunings of the cooling field (Fig. 3a). These 
differences are associated with the exit from the resonance of 
the interaction of the field with atoms in the processes of 
absorption/emission of photons as a result of recoil effects, 
which is most pronounced for atoms with an insufficiently 
small eR (Fig. 3c). The influence of this effect decreases as the 
detuning |d| is increased. In this case, the results of the semi-
classical approach based on the FP equation in form (20) are 
in better agreement with the results of the numerical solution 
of QKE (1) even for atoms with an insufficiently small param-
eter eR.

3.3. Sub-Doppler laser cooling in the field 
with the lin ^ lin configuration

When analysing the kinetics of atoms in the fields with the 
lin ^ lin configuration, we, as in Section 3.2, use the model of 
the optical transition Jg = 1 ® Je = 2, which makes it possible 
to additionally compare the efficiency of laser cooling in these 
configurations of light fields. In the field with the lin ^ lin con-
figuration formed by counterpropagating waves with orthog-
onal linear polarisations, deeper limits of laser cooling are 
reached than in the field with the s+ – s–  configuration (Fig. 4).

Figure 4 shows the dependences of the average kinetic 
energy of cold atoms achieved during laser cooling in fields 
of different intensity (characterised by the parameter U0) at 
different detunings for atoms with different parameters eR. 
We note that at red field detunings, |d| > 1, the expression 
for the induced diffusion coefficient at some low velocities 
of the atom locally takes negative values, which, for exam-
ple, can be seen directly from the analytical expressions for 
the induced diffusion coefficient presented in [37]. In this 
case, the expression averaged over the spatial period for the 
induced diffusion coefficient ( )D p( )i  (16) remains positive. 
This local behaviour of the diffusion coefficient looks 
unphysical and does not lead to a stationary numerical solu-
tion of FP equations (19) and (20), which indicates addi-
tional restrictions on the semiclassical expansion of the 
QKE that arise in fields with a spatially nonuniform polari-
sation, such as the lin ^ lin configuration. Therefore, for 
field detunings |d| > 1, FP equations (19) and (20) were 
solved numerically by using the induced diffusion coefficient 
averaged over the spatial period.

Based on the analysis of the results of laser cooling limits 
in the field with the lin ^ lin configuration (Fig. 4), it can be 
noted in the general case that the results obtained on the basis 
of the FP equation in form (20) are in better agreement with 
the results of the quantum approach obtained on the basis of 
numerical solution of QKE (1).
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Figure 3.  (Colour online) Kinetic energy of cold atoms in units of recoil 
energy as a function of U0 at various detunings of the light field for 
atoms and eR = (a) 10–3, (b) 10–2 and (c) 10–1 in the field with the 
s+ – s– configuration. The solid curves show the results obtained based 
on the numerical solution of QKE (1), and the dotted and dashed curves 
show the results obtained in the framework of semiclassical approaches 
based on the equations (19) and (20), respectively.
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Figure 4.  (Colour online) Kinetic energy of cold atoms in units of recoil 
energy as a function of U0 at various detunings of the light field for at-
oms and eR = (a) 10–3, (b) 10–2 and (c) 10–1 in the field with the lin ^ lin 
configuration. The solid curves show the results obtained based on the 
numerical solution of QKE (1), and the dotted and dashed curves show 
the results obtained in the framework of semiclassical approaches based 
on the equations (19) and (20), respectively. 
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4. Conclusions

The semiclassical approach to solving the problem of the 
kinetics of atoms in light fields is one of the fundamental 
approaches used, among other things, for qualitative analysis 
and description of the mechanisms of laser cooling and trap-
ping of atoms in light fields. Uncertainty in the description of 
the processes of fluctuations of forces acting on atoms in a 
light field and having a quantum nature from the point of 
view of the interaction of atoms with light, within the frame-
work of the semiclassical approach, leads to the so-called 
Itô– Stratonovich dilemma, which is expressed in various 
forms of the Fokker – Planck equation, and also stochastic 
Langevin equations modelling the kinetics of atoms interact-
ing with field photons.

In the framework of this work, we have performed a com-
parative analysis of the problem of laser cooling of atoms in 
light fields on the basis of a direct numerical solution of the 
quantum kinetic equation for the atomic density matrix (1), 
which makes it possible to accurately take into account quan-
tum recoil effects in the interaction of atoms with field pho-
tons, as well as on the basis of a semiclassical approach in 
various forms of writing the FP equation. Formally, the con-
ditions of the semiclassical approximation, in which equation 
(1) can be reduced to the FP equation for the distribution 
function of atoms in the phase space, is satisfied only for 
extremely small values of the parameter eR £ 10–3, where the 
difference in the form of FP equation (19) or ( 20) is insignifi-
cant. Indeed, in this limit, the solutions to Eqns (19) and (20) 
are in good agreement with each other and with the results 
obtained based on the numerical solution of QKE (1) with 
full allowance for quantum recoil effects. As the parameter eR 
increases, significant differences are observed in the solutions 
obtained on the basis of the FP equations in form (19) and 
(20). In this case, the results obtained on the basis of the semi-
classical approach in the form of induced diffusion (20) are in 
better agreement with the results obtained on the basis of the 
numerical solution of QKE (1).

The result obtained in our work makes it possible to sig-
nificantly expand the limits of applicability of the semiclassi-
cal approach up to eR = 0.1 for field detunings |d| > g/2 when 
choosing the FP equation in form (20). This result is impor-
tant because it makes it possible to justify the applicability of 
the semiclassical approach to laser cooling problems with an 
insufficiently small value of the parameter eR and to use in 
this case the FP equation for analysing the kinetics of atoms 
in light fields without resorting to resource-intensive calcula-
tions based on quantum approaches.
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