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Abstract.  The pulse duration at the output of femtosecond lasers 
is usually close to the Fourier limit, and can be shortened by 
increasing the spectral width. To this end, use is made of self-
phase modulation when a pulse propagates in a medium with cubic 
nonlinearity. Then, the pulse with a chirp (frequency dependence 
of the spectrum phase) is compressed due to a linear dispersion 
element, which introduces a chirp of the same modulus, but oppo-
site in sign. This pulse post-compression, known since the 1960s, 
has been widely used and is being developed up to the present for 
pulses with energies from fractions of a nJ to tens of J. The review 
is devoted to the theoretical foundations of this method, problems 
of energy scaling, and a discussion of the results of more than 150 
experimental studies.

Keywords: post-compression, TFC, CafCA, femtosecond lasers, 
Kerr nonlinearity.

1. Introduction

From the advent of lasers [1] to the present day, one of the 
main goals of research has been to obtain the shortest possi-
ble laser pulses [2]. There are three reasons why short pulses 
are of interest. Firstly, it is a tool for studying ultrafast pro-
cesses in physics, chemistry, and biology. In this case, the 
laser pulse plays the role of a clock; more precisely, the dura-
tion of the pulse is equal to the division value of the clock, i.e., 
it determines the minimum measurable time. For pump – probe 
experiments, two replicas of a short pulse are used, with their 
energy or power being usually quite moderate. Secondly, 
under certain conditions, short pulses open the way to experi-
ments that are inaccessible for longer pulses. For example, the 
generation of high harmonics (sequences of attosecond 
pulses) [3] requires femtosecond pulses, while the generation 
of single attosecond pulses requires pulses with a duration 
close to a single cycle of the electromagnetic radiation field. In 
such applications, in addition to a short duration, a specific, 
sometimes very significant, power of pulsed radiation is also 
needed. Thirdly, in the field of super-high power lasers [4] and 
superintense fields, the pulse duration also plays a key role, 
since the power depends only on the pulse energy and dura-
tion. An increase in the energy of such lasers is associated 

with an increase in the number of amplifiers, which greatly 
increases the already significant size and cost of lasers. 
Moreover, the radiation power of modern lasers is limited not 
by the fact that the laser pulse cannot be further amplified in 
CPA amplifiers [5] (CPA: Chirped Pulse Amplification), but 
by the fact that after amplification it cannot be compressed, 
since diffraction gratings have a low damage threshold , 
which limits the power. Thus, the only way to multiply the 
power of such lasers in practice is to shorten the output pulse 
after the diffraction grating compressor. Note that in the 
region of superintense fields, a short pulse duration (even at 
the same power) is sometimes an advantage.

The pulse duration at the output of femtosecond lasers 
usually slightly exceeds the Fourier limit, and for its multiple 
shortening one needs to increase the width of the emission 
spectrum by at least the same factor. To do this, self-phase 
modulation (SPM) of a laser pulse is used during its propaga-
tion in a medium with a cubic (Kerr) nonlinearity, whose 
refractive index n depends on the intensity as:

n = n0 + n2I, 	 (1)

where n0 is the linear refractive index, and n2 is the nonlinear 
refractive index determined by the cubic nonlinearity tensor 
c(3). As can be seen from (1), the pulse in this case passes 
through a medium with a time-varying refractive index, since 
I = I(t). This leads to SPM and, consequently, to the broaden-
ing of the emission spectrum:
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Here winst and w0 are the instantaneous and centre frequen-
cies; k0 = w0 /c; F = w0t – k0 zn is the phase; z is the coordinate; 
and c is the speed of light. Spectrum broadening is only one of 
the necessary conditions for the pulse shortening; in addition, 
it is required that all frequency components of the spectrum 
be in phase. At the output of a nonlinear element, the pulse 
becomes chirped, i.e. its instantaneous frequency (phase) 
becomes time-varying. In other words, the nonlinear element 
introduces the dependence of the phase of the spectrum on 
the frequency, which must be compensated for by adding the 
phase equal in the magnitude but opposite in sign. This is not 
difficult to do, since, as it is easy to see from (1) and (2), winst 
near the pulse maximum depends linearly on the frequency, 
while the phase of the spectrum depends quadratically (see 
Fig. 1). Unlike nonlinear broadening of the spectrum, correc-
tion of the phase of the pulse spectrum is a linear operation, 
which is performed using a grating or prism compressor, 
chirped mirrors, liquid crystal or acousto-optic modulators, 
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etc. Within the framework of this review, we will not consider 
the features of these devices, referring the reader, for example, 
to review [6]. This method of nonlinear compression of laser 
pulses (see Fig. 1) is usually called post-compression. In appli-
cations to high-power lasers, the term TFC (Thin Film 
Compression) [7] or CafCA (Compression after Compressor 
Approach) [4, 8] is used.

The idea of laser pulse compression using external phase 
modulation and subsequent dispersion compensation was 
proposed in 1968 [9] based on an analogy with pulse compres-
sion in chirped radars [10, 11]. Phase modulation in [9] was 
implemented using an electro-optical crystal, to which a sinu-
soidal voltage was applied. The laser pulse passed through the 
crystal at the moment of the zero phase of the voltage, i.e., the 
pulse frequency changed linearly in time. Duguay and Hansen 
[12] not only chirped a 500-ps pulse in an electro-optical crys-
tal, but also compressed it to 270 ps using a Gires – Tournois 
interferometer [13].

The key idea – use of cubic nonlinearity for SPM – was 
proposed by Fisher et al. [14] in 1969. In this work, they 
theoretically substantiated the method and demonstrated 
the prospects of using the CS2 liquid as a nonlinear medium 
and the Kerr effect as a nonlinear effect. In the same year, 
Laubereau [15] experimentally implemented nonlinear com-
pression: a 20-ps pulse was compressed several times. A sig-
nificant drawback of the liquid is the long relaxation time of 
the Kerr nonlinearity (2 ps for CS2), which limits the pulse 
duration to the picosecond range. Apparently, for this rea-
son, the idea was ‘forgotten’ and reincarnated only in the 
1980s with the development of femtosecond lasers and fibre 
technology.

Post-compression is the subject of several reviews 
[2,  6,  8,  16, 17] focused on certain methods of its implementa-
tion and the corresponding ranges of pulse intensity. The pur-
pose of this review is to summarise the main experimental 
results obtained over the past 40 years in the field of nonlinear 
compression of femtosecond laser pulses. The review is organ-
ised as follows. Section 2 briefly discusses the physical foun-
dations of SPM and the limitations that arise when the input 
pulse power is increased. A detailed review of the results for 
all variants of the geometry of a nonlinear medium is given in 
Sections 3 and 4 for waveguide and free propagation, respec-
tively. For scaling the compressed pulse power, the suppres-
sion of small-scale self-focusing is of fundamental impor-
tance. Section 5 is devoted to this problem.

2. Theoretical foundations of self-phase  
modulation and post-compression

A plethora of works are devoted to the physics of self-phase 
modulation and pulse post-compression. In this review, we 
will focus on experimental papers (Sections 3 and 4), and in 
this section we will restrict ourselves to a brief listing of the 
main equations, and input and output parameters of the 
problem (Section 2.1), as well as to a discussion of the limita-
tions and problems that arise in the scaling of the power 
(Section 2.2).

2.1. Equation, problem parameters, pulse compression factor

Propagation of laser pulses in a medium with a Kerr nonlin-
earity is given in the approximation of slowly varying ampli-
tudes by the generalised nonlinear Schrödinger equation, the 

linear part of which describes diffraction, dispersion, spatio-
temporal focusing, and linear losses, and the nonlinear part 
describes the instantaneous Kerr nonlinearity, retarded 
(Raman) nonlinearity, and also plasma nonlinearity: ionisa-
tion by a laser field and the influence of the resulting plasma 
on diffraction and dispersion. In full form [18 – 21], the equa-
tion is cumbersome, and therefore we present it in a simplified 
form, in which all orders of dispersion (important only for 
very short pulses) except the second one, linear losses (a para-
sitic effect that needs to be minimised), and also the Raman 
and plasma nonlinearities are neglected. These nonlinearities 
(along with the instantaneous Kerr nonlinearity) can be used 
for pulse compression, which, however, is beyond the scope 
of this review.

It is convenient to write the equation by normalising the 
coordinates z and r, the time t, and the electric field amplitude 
E to the corresponding radiation parameters at z = 0 and to 
the nonlinear medium length L:

L
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where u is the group velocity at a frequency w = w0; Ein is the 
input field intensity maximum in time and space; and Tin and 
w are the pulse duration and beam radius at the entrance, 
respectively. Here we will not specify the shape of the pulse 
and the shape of the beam (in a large number of cases they are 
close to Gaussian). Taking into account (3), the equation for 
Y has the form
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which shows that the problem is determined by four dimen-
sionless parameters:
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Here k2 = ¶2kn0(w) /¶w2 is the group velocity dispersion, and 
Iin is the maximum intensity in time and space at z = 0. These 
four parameters have a simple physical meaning: N is the 
number of field cycles in the input pulse; D is the ratio of L to 
the dispersion length Ld = T 2in /k2; Z is the ratio of L to the 
Rayleigh length LR = n0 k0w2; and the parameter B is the 
B-integral or nonlinear phase. Strictly speaking, the nonlinear 
phase incursion, as is easy to see from (1), is determined by 
the expression

dk n I znl

L

0 2
0
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and Fnl ¹ B if the pulse intensity changes during propagation 
(even for n2 = const). However, as a rule, it is the parameter B 
that is used in experimental work, since it has two important 
advantages: B is determined only by the conditions of the 
problem and can be easily measured. On the contrary, in 
order to find Fnl, it is necessary to solve equation (4), while 
Fnl is very difficult to measure.

In most cases, the ultimate goal of post-compression is to 
increase the pulse power Fp = Pout /Pin or even increase the 
intensity in the focal plane. At the same time, most experi-
mental works measure the pulse compression factor 

F = Tin /Tout, 	 (10)

with Tin and Tout being the full width at half maximum 
(FWHM) pulse duration. The parameter F is always greater 
than Fp, both due to energy losses and due to the transfer of 
part of the energy to the pulse periphery, which does not 
change Tout, but reduces Pout. Below we will discuss exactly 
the pulse compression factor F as a post-compression crite-
rion, as well as Pout and Tout.

The parameter Z is responsible for the beam diffraction 
and does not directly affect the pulse compression during col-
linear propagation; however, as will be discussed in detail 
below, it is the spatial effects that limit the pulse power scal-
ing. Numerical simulation (4) shows that for long pulses 
(N >>   1), the value of N does not significantly affect the com-
pression. Nevertheless, for short pulses, the last term on the 
right-hand side of (4) leads to a ‘self-steepening’ of the pulse 
front and to the formation of an envelope shock wave. This 
circumstance was first pointed out in [22] and later in [23, 24]. 
Note that Anderson and Lisak [25] found an analytical 
solution to (4), neglecting dispersion (D = 0) and diffrac-
tion (D^ = 0).

The influence of the parameter D depends on its value and 
sign; more precisely, the relation between the signs of D and B 
is important, i.e., between the signs of k2 and n2. As a rule, the 
signs of k2 and n2 are positive for transparent dielectrics in the 
visible and near-IR ranges. If the signs are opposite, then self-
compression is possible during propagation in the medium. In 
this review, we will not consider self-compression; we refer the 
reader, for example, to papers [26 – 30]. The authors of Ref.  [8] 
analysed the influence of the value of D both on the broaden-
ing of the spectrum and on the compression factors F and 
the increase in power Fp. They showed that for a Gaussian 
pulse at D < 0.05, F can be estimated with high accuracy by 
the formula

. .F B D1 0 59 1 1 26= + -^ h. 	 (11)

As can be seen from (11), dispersion reduces F, and its role 
can be interpreted as a decrease in the effective value of the 
B-integral by a factor of 1 – 1.26D1/2. Paper [8] also showed 
that the factor Fp is less affected by dispersion than F: for 
example, at B = 20, the factor Fp at D = 0.05 is only 1.2 times 
less than Fp at D = 0, while F is 1.7 times less. These calcula-
tions were made by correcting the quadratic component of 
the spectrum phase. If a full correction is applied, i.e., the 
phase of the output pulse is set constant, then F will be larger, 
but insignificantly, by 10 %. Numerical simulation at B = 48 
showed [31] that even for such an extreme value of the 
B-integral, F is only 20 % less than that which follows from 
(11). Thus, of the four parameters in (4), the B-integral is the 
determining one. The remaining parameters and the effects 

behind them are rather parasitic in nature, defining the limita-
tions and problems that arise during post-compression.

In conclusion, we note that SPM is studied numerically 
without the approximation of slowly varying amplitudes (see, 
for example, [32 – 34]).

2.2. Post-compression power scaling limitations

Four main problems can be formulated that limit the power 
scaling of both the input and output pulses: large-scale self-
focusing, small-scale self-focusing, optical breakdown of the 
medium, and spatial inhomogeneity of SPM.

2.2.1. Large-scale self-focusing (LSSF). Large-scale self-
focusing – self-focusing of the beam as a whole – occurs if the 
beam power exceeds the critical self-focusing power Pcr. 
Physically, Pcr denotes the power at which the diffraction 
spreading of the beam is compensated for by self-focusing. In 
particular, for Pin = Pcr, the beam size at the focus of a con-
ventional lens tends to zero if the beam has a plane wavefront 
in front of the lens. For Pin > Pcr, collapse is possible even 
without a lens. However, the condition P > Pcr and even 
P >>   Pcr does not imply that the collapse is inevitable, because 
collapse requires a certain length of beam propagation in a 
nonlinear medium, Lcr. Goldberg et al. [35] found numerically 
the values of Pcr and Lcr for a Gaussian beam:
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where w is the beam radius (according to the intensity level 
1/e). In other works, for example, in [36], the numerical 
coefficients in these formulae are slightly different, but this 
difference is not fundamental for us. The parameter Pcr is 
almost completely determined by n2. Typical values of Pcr 
in solids are several MW, while in gases at atmospheric 
pressure they are three to four orders of magnitude higher. 
This circumstance determines the advantage of gases (see 
Section 3 for details). It is of fundamental importance that 
the key parameter is precisely the power, rather than the 
intensity, i.e., Pcr does not depend on the beam radius w. 
On the contrary, Lcr grows quadratically with w. In addi-
tion, Lcr at P >> Pcr is proportional to (Pcr /P)0.5, which was 
first pointed out by Kelly [37]. This causes a common mis-
conception that LSSF is the most dangerous for high-
power lasers. In fact, the opposite is true because LSSF 
does not pose any danger to high-power lasers because of 
the large beam sizes. Substituting P = pw2I into (13), for P 
>> Pcr we obtain

.
L
L

Bn L

w1 4cr

0 l
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Taking into account the fact that in high-power lasers L is on 
the order of a millimetre, for beams with w > 1 mm we obtain 
Lcr >>   L, i.e., LSSF is excluded. In other words, the collapse 
is not only absent in a nonlinear medium, but also the beam 
diameter remains virtually unchanged.

2.2.2. Small-scale self-focusing (SSSF). The instability of 
a plane wave propagating in a medium with a cubic nonlin-
earity [38] leads to an increase in spatial perturbations and, as 
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a consequence, to small-scale self-focusing (SSSF). Due to 
SSSF, the beam is split into many filaments, which signifi-
cantly degrades the beam quality and, finally, leads to the 
breakdown of optical elements. Each filament contains a 
power of the order Pcr, i.e., SSSF is possible only for P > Pcr. 
The development of SSSF is determined both by disturbances 
(noise) at the input to the medium and by the nonlinearity 
itself. On the one hand, the power and spatial noise spectrum 
are quite difficult to measure in practice, and on the other 
hand, their influence on SSSF is not so great, since they serve 
only as a seed. The gain of these noises depends on the angle 
q between the perturbation wave vector and the z axis, as well 
as on the B-integral. The gain is maximum at

2
n
n I

max
in

0

2q q= =  	 (15)

and is approximately equal to unity at q > 21/2qmax. For the 
most dangerous angles q » qmax, the gain depends exponen-
tially on B, and so B is the main parameter that determines 
the presence or absence of SSSF. Unlike LSSF, for SSSF it is 
not power that is important, but intensity. The similarity lies 
in the fact that the medium length L is important: even at 
large Iin, the B-integral can be small for a short medium. The 
stationary theory of SSSF has been described in many papers 
(see, for example, [8, 38 – 42]. In the stationary case, the beam 
of nanosecond lasers is split into filaments, as a rule, at B > 
2 – 3; therefore, the analogue of Lcr for SSSF is length at which 
B = 3. Thus, not only the same nonlinearity, but also the same 
parameter – the B-integral – is both useful and parasitic for 
compression (11). At first glance, post-compression is possi-
ble only in a narrow range, B < 3, which even theoretically 
(11) makes it possible to expect insignificant pulse compres-
sion, but this is not the case, since high-power femtosecond 
lasers have two significant differences from nanosecond 
lasers.

The first difference is spatial. A fundamentally impor-
tant feature of SSSF in high-power femtosecond lasers com-
pared to nanosecond lasers is a significant increase in qmax. 
This is due to the fact that the breakdown threshold of opti-
cal elements in the femtosecond range is much higher and 
the laser radiation intensity Iin equals not units of GW cm–2, 
but units of TW cm–2, and, consequently, qmax increases by a 
factor of 30. The second difference is spatiotemporal. It 
requires taking into account linear dispersion, nonlinear dis-
persion, and the fact that during propagation the perturba-
tion can lag behind the main pulse, and if the delay time is 
comparable with the pulse duration, then the instability is 
suppressed. These differences make it possible, under cer-
tain conditions, to avoid SSSF and implement post-com-
pression even for B >>  3. We will discuss this in more detail 
in Section 5.

2.2.3. Optical breakdown of the medium. At a high inten-
sity of the laser beam, ionisation of a nonlinear medium is 
possible, which results in plasma generation. In some cases, 
this is a positive effect, which is used, among other things, for 
SPM and subsequent compression. In this case, the nonlinear 
refractive index is no longer proportional to the intensity (1), 
since it is determined by the plasma density. Because the 
plasma density always increases with time (in contrast to 
intensity), the instantaneous frequency changes monotoni-
cally [see (2)], shifting all the time to the short-wavelength 
region (blue-shift). Accordingly, the chirp is very different 

from the linear one, which makes subsequent compression 
difficult. Nevertheless, compression based on ionisation non-
linearity is possible, even in the filamentation regime. 
However, its consideration is beyond the scope of this review; 
therefore, we confine ourselves to references to reviews 
[19,  43] and further consider ionisation and optical break-
down as parasitic effects that must be avoided.

Ionisation is determined by the intensity of the radiation 
beam, the threshold value of which Ibr is approximately 
1013 W cm–2 for solids and 1014 – 1015 W cm–2 for noble gases. 
Thus, the power Pin is strictly limited by Pbr = pw2Ibr, i.e., it 
depends quadratically on the beam radius. Unlike LSSF and 
SSSF, the limitation does not depend on the medium length 
L; moreover, for solids, Ibr on the surface is usually lower 
than in the bulk.

2.2.4. Spatial inhomogeneity of SPM. Because the beam 
intensity depends on the transverse coordinate r, then in the 
general case both the B-integral (8) and the nonlinear phase 
(9) are functions of r. This leads to two undesirable conse-
quences. First, a pulse is compressed inhomogeneously in r: 
the compression factor F (11) depends on B. In particular, at 
the beam periphery, where the intensity is much lower than on 
the axis, the compression effect practically disappears. 
Second, the spatial inhomogeneity of the phase leads to non-
linear distortions of the wavefront, which deteriorates the 
quality of beam focusing, reducing the focal intensity. Both of 
these consequences can significantly reduce the benefit of 
pulse compression.

At small values of B, the inhomogeneity is also insignifi-
cant, but large values of the compression factor F require 
large B. Thus, the spatial inhomogeneity of SPM is deter-
mined by the B-integral and the shape of the beam (obviously, 
inhomogeneity is absent for a flat-top beam, and for a super-
Gaussian beam it is less than that for a Gaussian beam). Post-
compression of low-power pulses is based on waveguide 
propagation (see Section 3), in which this effect is absent: the 
entire spatial mode acquires a nonlinear phase, and there is no 
dependence of the phase on r. High power requires the rejec-
tion of waveguides, and the problem of the spatial inhomoge-
neity of SPM comes to the fore (see Section 4).

It is obvious that the influence of the above-considered 
four restrictions on the power scaling during post-compres-
sion essentially depends on the geometry of beam propaga-
tion in a nonlinear medium (see Fig. 1). In Sections 3 and 4, 
we consider all known variants of the geometry and deter-
mine which of the restrictions are dramatic and which are 
insignificant, as well as present a review of the experimental 
results.

3. Waveguide propagation

Figure 1 schematically shows eight variants for the geometry 
of a nonlinear medium. First of all, it is necessary to separate 
the waveguide and free propagation of the beam. In the first 
case, it is needed to form at the input a beam that is as close as 
possible to the mode (usually the lowest) of the corresponding 
waveguide. In an ideal case, the same mode will be at the out-
put, the pulse energy will be conserved, and SPM will appear. 
If there is an intermode interaction, then part of the energy 
will be transferred to other modes, which, as a rule, are emit-
ted from the waveguide, leading to an energy loss. The main 
disadvantage of waveguides is the small size of the mode, 
which limits the power. Their undoubted advantage is their 
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large length, which provides a large B-integral even at a low 
intensity.

3.1. Single mode fibre (SMF)

The simplest waveguide is a single-mode fibre (SMF), in 
which the field is retained due to either total internal reflec-
tion (SMF-TIR: Single Mode Fibre – Total Internal 
Reflection) or cladding microstructuring – the so-called 
photonic crystal fibres (SMF-PCF: Single Mode 
Fibre – Photonic Crystal Fibre). Note the minimum energy 
loss, as well as compactness and practically unlimited length, 
which makes fibres indispensable for low-power lasers. At 
the same time, a very small aperture of single-mode fibres is 
also their main disadvantage: LSSF and optical breakdown 
limit power scaling. In SMF-TIR, the input power Pin is 
strictly limited to Pcr »  4 MW, since Lcr is small due to the 
small diameter. The value of Pbr, although insignificantly, is 
greater than Pcr; therefore, single-mode fibres, even with a 
large aperture, do not allow the power Pin to be increased to 
a value exceeding Pcr.

Significant progress in this direction is associated with 
single-mode photonic crystal fibres created in 1996 [44]. First, 

the size of the fundamental mode in SMF-PCFs is increased 
(while maintaining single-mode propagation) due to the fact 
that the high modes are not held by the structure surrounding 
the core of the fibre. However, this in itself does not lead to 
significant power scaling, since the main limitation, Pcr, does 
not depend on the aperture (12). This limitation was over-
come by hollow-core SMF-PCFs [45], in which Pcr is much 
higher, since light propagates mainly through air or another 
gas, i.e., in a medium whose Pcr is several orders of magnitude 
higher than that of fused silica. Thus, optical breakdown lim-
its the power. The threshold breakdown power Pbr in hollow-
core SMF-PCFs is higher due to both the higher (compared 
to silica) gas breakdown threshold and the large mode size 
(up to 100 mm or greater) [46]. An increase in the fibre mode 
size is discussed in detail in [47]. Another important advan-
tage of hollow-core PCFs is their wide bandwidth. The prop-
erties of PCFs are described in detail in review [48]. The 
results of experiments with SMF-TIR [49 – 69] (Sections 3.1.1) 
and with SMF-PCF [70 – 89] (Sections 3.1.2) are presented in 
Fig. 2 in historical development and in Figs 3 and 4 on the 
parameter plane.

3.1.1. Fibre based on total internal reflection (SMF-TIR). 
Spectrum broadening in SMF-TIR was first demonstrated by 
Stolen and Lin [90], with the maximum value of the B-integral 

SMF-PCF
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Figure 1.  (Colour online) Principle of post-compression and variants of the geometry of a nonlinear medium.				  
SMF-TIR is a single-mode fibre based on total internal reflection; SMF-PCF is a single-mode fibre with a microstructured cladding, the so-called 
photonic crystal fibre; TW-HCF is a gas filled rigid thick walled hollow-core fibre; SF-HCF is a gas-filled thin walled stretched flexible hollow-core 
fibre; SS-MPC is a solid-state-based Herriott multipass cell; gas-MPC is a gas-filled Herriott multipass cell; NCFP is noncollinear free propagation 
of a focused beam; TFC/CafCA (Thin Film Compression/Compression after Compressor Approach) is free propagation of a collimated beam; and 
S(w) and j(w) are the amplitude and phase of the Fourier spectrum of the pulse.
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being 4.5p. In the same work, a detailed theoretical analysis is 
presented, but the issue of subsequent compression is not dis-
cussed there. Soon several theoretical papers [91 – 93] devoted 
specifically to compression appeared. The pulse was experi-
mentally compressed for the first time in 1981 [49] (from 5.5 
to 1.5 ps) using a 70-m-long single-mode fibre and a cuvette 
with sodium vapour used as a compressor. In the next experi-
ment [50], compression was already carried out in the femto-
second range: a pulse with a duration Tin = 90 fs and an 
energy of several nJ was focused into a 15-cm-long fibre, after 
which a diffraction grating compressor compressed it to 
Tout = 30 fs.

In the 1980s and 1990s there appeared many experimen-
tal works [51 – 61, 94], and impressive results were immedi-
ately obtained. In particular, already in 1983, two-stage 
pulse compression was demonstrated [52], and in 1984 [94], 
a record-breaking and still unsurpassed 80-fold pulse com-
pression per pass was demonstrated (Tin = 33 ps, Tout = 0.41 
ps). In [55], a gradient fibre with a large mode diameter was 
used. The output pulse power Pout reached several MW 
[53,  56] and Tout = 6 fs [58], which for several years was the 
world record for the pulse duration. Note that in this work 
the intensity in the fibre was 1 – 2 TW cm–2, the fibre length 
was only 9 mm, and two compressors (diffraction grating 
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Figure 2.  (Colour online) History of post-compression. Output pulse powers achieved using SMF-TIR [49 – 69] and SMF-PCF [70 – 89], TW-HCF 
[98, 100, 106, 108 – 146] and SF-HCF [14 – 159], Herriott SS-MPC [176 – 187] and gas-MPC [125, 188 – 200], as well as using noncollinear free 
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Figure 3.  (Colour online) Experimental results on the ‘output pulse duration – output pulse energy’ plane obtained using SMF-TIR [49 – 69] and 
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as using noncollinear free propagation (NCFP) of focused [83, 151, 182, 186, 216 – 229] and collimated (TFC/CafCA) [230 – 246] beams.
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and prism compressor) were used for pulse shortening. The 
record was broken 10 years later [60]: a pulse with a dura-
tion Tout = 4.6 fs even today is the shortest pulse obtained 
using SMF-TIR.

In the 2010s research continued, and the main effort was 
directed towards increasing the power output. It was increased 
by an order of magnitude – up to tens of MW. In [65], the 
input power Pin, although slightly, still exceeded Pcr. The 
authors do not discuss the reasons for the lack of self-focus-
ing, but apparently this was due to the fact that a fibre with a 
diameter of 59 mm and a length L of only 29 mm was used, 
which is less than Lcr (12). It is possible that further optimisa-
tion of the fibre and input pulse parameters will make it pos-
sible to obtain an output power of more than 100 MW.

It is important to note that SMF-TIRs have two important 
advantages. First, they can be doped and used simultaneously 
as amplifiers [62, 67]. Second, they make it relatively easy to 
increase the output power by summing parallel spatial channels 
[66], consecutive time channels [69], or both [64]. In the latter 
case, 32 pulse replicas (16 temporal replicas due to the use of 
four birefringent crystals and two spatial replicas due to the use 
of a Sagnac interferometer) with a duration Tin = 400 fs were 
compressed into a single pulse with Tout = 71 fs and an energy 
of 7.5 mJ. The obtained power Pout ~ 100 MW is a record for 
SFM-TIR, despite the fact that the power of each replica in 
the fibre was significantly less than Pcr.

To conclude this section, we mention the method for sum-
ming parallel channels, based on the nonlinear interaction 
between pulses propagating in closely spaced fibres [95]. 
Under certain conditions, a stable supermode is formed in 
such a spatial fibre grating, which automatically ensures the 
phasing of channels, and their number can be very large. Such 
a supermode was experimentally demonstrated for 25 fibres 
[96]. The use of this supermode for SPM and subsequent pulse 
compression can significantly increase the output power in 
the future.

3.1.2. Photonic crystal fibre (SMF-PCF). In 2004 
Konorov et al. [97] demonstrated for the first time SPM in 

hollow-core SMF-PCFs filled with air and helium. At the 
same time, the first compression was demonstrated in ‘con-
ventional’ (not hollow) fibres in 2003 [84], with the 33-fs pulse 
power Pout being 12 MW, and the compression factor F = 24 
being a record for SMF-PCFs. Subsequent experiments with 
non-hollow-core SMF-PCFs [77, 80, 81] only slightly 
improved the results: Tout = 23 fs, and Pout = 34 MW [77], 
after which the attention of researchers switched to hollow-
core fibres. In the first experiment [89], Pout was slightly more 
than 1 MW, while F was only 4.3. However, to date, hollow-
core SMF-PCFs have significantly ‘overtaken’ SMF-TIRs: 
Pout has reached 1.5 GW [74], and Tout = 4.4 fs [76].

In [72, 75], two-stage compression was demonstrated, 
with the pulse self-compression occurring in the second stage 
due to anomalous dispersion. Note that after self-compres-
sion, both studies used additional external compression. In 
[71, 75], a single-ring SMF-PCF was used, which is a ring of 
thin-walled capillaries around a hollow core. It is also inter-
esting to note paper [88], in which radiation pulses com-
pressed from Tin = 190 fs to Tout = 70 – 120 fs were obtained, 
tunable in wavelength from 825 to 1210 nm.

In all experiments with SMF-TIR, Pin was below Pbr, 
which leaves room for a further increase in power, however, 
the ‘margin’ is small and exceeding the barrier of 10 GW 
seems unlikely. This requires a significant increase in the aper-
ture, i.e., a transition to hollow capillaries.

3.2. Hollow-core fibres

One can significantly increase Pin by abandoning single-mode 
fibre in favour of gas-filled capillaries, i.e. hollow-core fibres 
(HCFs). The principal feature of a capillary is its multimode 
nature, and also the fact that it is the grazing angles of inci-
dence on the walls of the capillary rather than the total inter-
nal reflection that prevents the beam from transverse spread-
ing. Both of these circumstances are significant drawbacks. 
The first requires a very precise input of radiation into the 
capillary and matching with the size of the fundamental 
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Figure 4.  (Colour online) Experimental results on the ‘input pulse power – compression factor’ plane obtained using SMF-TIR [49 – 69] and SMF-
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mode. The second is a high degree of straightness of the capil-
lary, since the slightest bend leads to the emission of the fun-
damental mode. As a result, the energy transmission of HCFs 
is typically less than 50 %. Advantages of HCFs are the large 
aperture and the use of gas as a nonlinear medium. A large 
aperture (up to 1 mm) and a high gas breakdown threshold 
increase Pbr, while a small n2 in gases increases Pcr. Moreover, 
using different gases and their different pressures, it is conve-
nient to control both the nonlinearity and the dispersion over 
a very wide range.

It is noted in the literature that the idea of using HCFs 
was proposed and implemented by Nisoli and Silversti [98] in 
1996. Strictly speaking, what is new in this work is the pro-
posal to fill the capillary with a gas, and the very idea of using 
a capillary for SPM was realised as early as 1974 [99]. In 1991 
Zhou et al. [100] demonstrated a pulse compression from 45 
to 2 ps at a compressed pulse energy of 0.3 mJ. In these works, 
the capillary was filled with a liquid (CS2).

Theoretical aspects of compression in HCFs can be 
found in [101], as well as in review [6]. Since the main power 
limitation is Pcr, we note that several papers [2, 6, 102, 103] 
stated that the value of Pcr in HCFs is greater than in free 
space. However, Fibich and Gaeta [104] showed that this is 
not the case. Usually, one tries to exclude ionisation by lim-
iting the input intensity, but the opposite strategy is also 
possible, i.e. to use ionisation nonlinearity [105]. The propa-
gation of an arbitrarily polarised beam is analysed in detail 
in Refs [6, 106].

The length of a conventional rigid thick walled hollow-
core fibre (TW-HCF) does not exceed 1 m, since it is impos-
sible to ensure the required quality of the inner wall at longer 
lengths. The fact is that losses are significant even with mini-
mal bends (distortions) of the core. A stretched flexible thin 
walled hollow core fibre (SF-HCF) can have a significantly 
longer length. The idea [107] is that hollow cores with thin 
walls (tens of microns) are flexible, and this allows them to be 
stretched by applying opposite forces to both ends. In this 
way, the straightness of the hollow core is achieved (like that 
of a guitar string). Due to gravity, the radius of curvature R is 
not equal to infinity, but can reach several kilometres [107] 
with a moderate tensile force T, since R = T/r, where r is the 
linear density. Due to thin walls, r is usually less than 1 g m–1 
[16]. It is important that R is independent of the capillary 
length, and hence it is limited only by the size of the labora-
tory.

Thus, the capillaries have radically shifted the power lim-
its (Pcr  and Pbr) – up to tens of GW. Section 3.2.1 is devoted 
to ordinary thick-walled hollow fibres (TW-HCFs), and 
Section 3.2.2 describes stretched flexible hollow-cores fibres 
(SF-HCF) that have been actively used in recent years. The 
results of experiments with TW-HCFs [98, 100, 106, 108 – 146] 
and SF-HCFs [147 – 159] are presented in Figs 2 – 4.

3.2.1 Thick walled hollow-core fibres (TW-HCFs). In the 
very first experimental work with TW-HCFs [98], the authors 
managed to obtain impressive results: the pulse was com-
pressed by a factor of 14 (from 140 to 10 fs) after passing 
through a capillary 70 cm long and 140 mm in diameter, filled 
with krypton at a pressure of 2 atm, and a compressor con-
sisting of a pair of prisms. The output pulse power Pout was 
22 GW, which even today is an order of magnitude higher 
than that achieved with the use of fibre nonlinear compres-
sors. The next year, Pout = 100 GW [108] was achieved, a 
result that was soon repeated by the inventors of HCFs 
[111,  112]. In 2005, Pout  = 0.5 TW was obtained [115], and, 

finally, the threshold of 1 TW was overcome in 2010 
[128,  129,  146], but so far no progress has been made. The 
authors of Refs  [127, 133, 160] obtained a slightly higher 
power, Pout  = 1.2 TW, using the ionisation nonlinearity. The 
record duration Tout = 3.4 fs [120] was reached even faster, 
and the record compression ratio F = 18 [144] is only slightly 
higher than that obtained in [98] and even lower than that 
obtained in [100] in the picosecond range.

Further power growth in TW-HCFs is limited by LSSF: 
Pcr for argon at atmospheric pressure is about 10 GW, and for 
Pout = 1 TW to be reached, an input power Pin of at least 
100 GW is needed. For such a radical increase in Pcr, neon 
and even helium [129] were used, which have a much smaller 
n2. In addition, the idea of a longitudinal pressure gradient 
proposed in Refs [161, 162] played an important role: a min-
imum (almost zero) pressure at the input to the capillary and 
a maximum at the output. When propagating through a 
capillary, the power of pulsed radiation decreases due to the 
‘emission’ of higher spatial modes and dispersion spreading, 
and, therefore, the input power can be greater than the criti-
cal power corresponding to the maximum pressure. This 
idea was first implemented in the above-mentioned papers 
with record-breaking results [115, 129], as well as in many 
others [116 – 118, 121, 124, 135, 138, 149].

It is possible to increase Pcr by 1/3 by using circularly 
polarised radiation instead of linearly polarised one, which 
was implemented in Refs [106, 130, 163]. Another idea for 
increasing Pout – using a planar (one-dimensional) rather than 
a circular capillary – was proposed in [164] and relaised in 
several papers [122, 123, 128, 137, 146]. This also made it pos-
sible to achieve a power Pout no higher than 1 TW [128, 146].

The reason for the limitation of Pout is related to the fact 
that a small value of n2 automatically leads to a decrease in 
the B-integral (8) and, consequently, to a decrease in the com-
pression factor (11). It is no coincidence that the maximum 
compression factor in works with terawatt power is only 6.2 
[141]. The intensity is limited by the breakdown threshold, 
and so the B-integral can be increased only at the expense of 
the length. The length of rigid TW-HCFs is limited to 1 m, 
since the scattering into higher spatial modes is significant 
even with minimal bends. Stretched flexible thin walled HCFs 
can be much longer.

3.2.2. Stretched flexible thin walled hollow-core fibres 
(SF-HCFs). Already in the first work using SF-HCFs [147], 
a power of 93 GW was obtained in 2011, and 750 GW three 
years later [148]. SF-HCFs have replaced conventional 
TW-HCFs since 2018, and Pout = 1.6 TW [155, 158], a pulse 
duration Tout = 3.4 fs [154], and F = 48 [156] have been 
achieved. Note that the values of the first two parameters are 
comparable to the record values for TW-HCFs, and F is 
much larger. In [155, 158], use was made of capillaries with 
lengths of 3.75 and 3 m and diameters of 0.53 and 1 mm, filled 
with gases with a large Pcr value – helium and neon at a pres-
sure of 2 and 2.1 atm, respectively. The maximum length of 
SF-HCFs to date is 6 m [150, 153]; however, in these works, 
the input power was low, and so argon was employed. Thus, 
the use of SF-HCFs has a potential to advance into the multi-
terawatt power range.

Although the Raman nonlinearity is beyond the scope of 
this review, we note work [156], in which an SF-HCF 3.5 m 
long and 0.5 mm in diameter was filled with molecular gases 
with linear N2 or N2O molecules, as well as argon (for com-
parison). Use was made of a long input pulse (Tin = 280 fs), 
for which the rotational nonlinearity is almost instantaneous. 
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As a result, a supercontinuum was generated with a symmet-
ric (in contrast to the case when argon was used) spectrum of 
much greater width (also compared to argon). The experi-
ments were performed with 0.4 mJ pulses, and so Pout did not 
exceed 20 GW, but the compression ratios were impressive: 
F  = 40 with N2 and F = 27 with N2O. In a nitrogen-filled 
SF-HCF 5.5 m long and 1 mm in diameter, the power Pout = 
0.7 TW (14 mJ, 20 fs) was obtained in [157].

3.3. Discrete waveguides – Herriott multipass cells (MPCs)

Instead of continuous waveguides – fibres or capillaries – dis-
crete ones can be employed. The beam propagates in free 
space, and diffraction is compensated for by periodically 
located lenses or mirrors, between which there are waists. 
This idea was proposed in [165, 166]. The authors performed 
detailed analytical and numerical studies showing that the 
compression factor F can be greater than 15 if B < 1.6 in each 
nonlinear medium. In practice, it is convenient to organise 
discrete waveguides using a compact Herriott cell [167], which 
consists of two spherical mirrors with an aperture much larger 
than the beam aperture. A misaligned beam is multiply 
reflected from the mirrors, each time passing through the 
waist located between them. The properties of the Herriott 
cell are described in more detail, for example, in [168]. Such 
devices are called multipass cells (MPCs): the radiation 
passes through them dozens of times. As a nonlinear 
medium, use is made of both solid-state plates, usually 
located near the waist [solid-state-based multipass cells 
(SS-MPCs)], and a gas that fills the cell completely [gas-
filled multipass cells (gas-MPCs)]. In both cases, SPM, while 
remaining small per pass, accumulates per many passes. In 
SS-MPCs, light propagates most of the way in a linear 
medium, while the nonlinear medium is thin and its length 
can be less than Lcr. This makes it possible to use the pulse 
power Pin higher than Pcr, and at the same time avoid LSSF 
(see Section 2.2.1). A detailed theoretical study can be found 
in [169] and in patent [170].

The use of gas-MPCs for SPM was proposed in [169]. 
There are two qualitative differences from the case of using 
SS-MPCs. First, the nonlinear medium occupies the entire 
propagation region, i.e., the length of the medium is much 
longer than the waist length: L >>  kw2. In his pioneering work 
Talanov [171] found a change in variables that allows one to 
solve Eqns (4) in the stationary case when the incident radia-
tion is focused, if its solution for a collimated beam is known. 
In particular, the formula for the self-focusing length Lcr (13) 
was modified for the case of a focused beam. In 2000 
Milosevic et al. [103] considered in more detail the problem 
of a single pass through the MPC and showed that under 
two conditions, the B-integral << 1 and (P/Pcr)2 <<  1, the 
Gaussian beam (TEM00 mode) is resistant to self-focusing. 
Namely, when propagating to the focal plane, part of the 
energy of the TEM00 mode is transferred to the TEM01 
mode, but after the focal plane the direction of the energy 
flow changes, and as a result, all the energy from the TEM01 
mode returns to the TEM00 mode. It is important to note the 
second degree in the last inequality, which allows one to 
‘approach’ the critical power up to P = 0.5Pcr. This effect 
underlies the successful development of gas-MPCs, but until 
2017 [169] it was ignored. Secondly, the transition from a 
solid-state nonlinear medium to a gas medium (as in the case 
of the transition from a silica fibre to capillaries) makes it 

possible to significantly increase Pcr, and, consequently, 
both Pin and Pout. Theoretical studies on the use of gas-
MPCs can be found in [172 – 175], as well as in review [92] 
and references therein.

Thus, in MPCs, the power is limited by the Pcr value of the 
LSSF. In SS-MPCs, the nonlinear medium is thin and can be 
shorter than Lcr, which allows Pin > Pcr (Section 3.3.1). In 
gas-MPCs (Section 3.3.2), Pin must be strictly less than Pcr, 
but the value of Pin itself is much larger due to the low value 
of n2 in gases. The results of experiments with SS-MPCs 
[176 – 187] and gas-MPCs [125, 188 – 200] are presented in 
Figs 2 – 4 and described below.

3.3.1. Solid-state multipass cells (SS-MPCs). In the first 
experiment in 2016 [76], the nonlinear medium was located 
in a wide beam rather than at the focus. This geometry that 
was proposed in [165, 166]. Herriott cell mirrors were depos-
ited onto the outer surfaces of fused silica substrates, which 
served as a nonlinear medium. In [176], the pulse was com-
pressed by a factor of five and the output power Pout was 
0.24 GW. In most subsequent works, nonlinear plates were 
located either in the waist or near it. It is important to note 
that the nonlinear medium in SS-MPCs is much shorter than 
that in fibres and capillaries, and this makes it possible to 
exceed the critical power Pcr if the length of the medium L is 
less than Lcr. This circumstance has been successfully 
exploited: for example, in [184], where (in the second com-
pression stage) Pin = 250 MW, i.e., almost 100 times more 
than Pcr for fused silica. Substituting the parameters L = 
9.5 mm, w = 0.22 mm, and B = 1.2 (per pass) indicated in the 
work into formula (13), we obtain Lcr = 2.1L, which ensured 
the absence of catastrophic self-focusing. Song et al. [187] 
used values close to these in the second compression stage. 
Thus, although LSSF is the main effect limiting Pin, the 
threshold (in contrast to the fibre and capillary) is not Pcr, 
but a value about 100 times greater. On the other hand, in 
Refs [184, 187], Lcr is only slightly larger than L, and there-
fore further scaling is difficult. It is no coincidence that these 
works yielded record output power values for SS-MPCs: 
Pout = 0.71 and 0.68 GW, respectively.

The record value F = 10.8 was also obtained in [184], but 
in the first cascade. To date, SS-MPCs are characterised by 
relatively small F and long pulses: the minimum Tin = 17 fs 
was obtained after the second cascade in [186]. This makes the 
use of multistage compression relevant and popular. Thus, 
out of twelve experimental works [176 – 180, 182 – 187, 200], 
four [184 – 187] implemented two cascades, and one [179] 
utilised even three compression cascades.

Thus, SS-MPCs are close in power to SMF-PCFs, inferior 
to them in duration, and, accordingly, leave them behind in 
pulse energy. The pulse compression to several field cycles 
and a slight increase in the input power will lead to an increase 
in Pout, but it is unlikely that it will allow the level of tens of 
GW to be reached, which was obtained in the very first work 
with gas-MPCs.

3.3.2. Gas-filled multipass cells (gas-MPCs). The use of 
gas-MPCs was first demonstrated in 2018 almost simultane-
ously in two papers [188, 189], where Pout powers of 4.1 and 
51 GW, respectively, were achieved. The same year, 
Kaumanns et al. [190] managed to obtain a subterawatt 
power (430 GW), and, finally, in 2021, the same group [195] 
reached Pout = 2.9 TW. Argon was used in all these works, 
and Pin was 25 % – 35 % of Pcr, which increased from 2 GW 
[189] to 220 GW [195]. Such a significant increase in Pcr was 
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provided by a decrease in the argon pressure from 7 to 
0.25  atm, as well as by using the Laguerre – Gauss vortex 
mode LG10 instead of the Gaussian beam, for which Pcr is 
four times larger than that for the Gaussian beam [201, 202]. 
The theory is described in detail in [175]. Note that in 
[190, 195], a very long input pulse (Tin = 1.3 ps) was used and 
a large compression factor was obtained (F > 30), which 
also ensured a large value of Pout. The cost of increasing Pcr 
and, accordingly, Pin is the increase in the waist diameter, 
which is necessary to avoid ionisation. This, in turn, inevita-
bly leads to an elongation of the Herriott cell so that the 
intensity on the mirrors is less than the breakdown thresh-
old. Thus, in the four experimental studies mentioned above, 
the cell lengths were 0.45 m [189], 1 m [188], 4 m [190], and 
8 m [195].

The maximum compression factor F = 37 (the shorten-
ing of the pulse from 1200 to 32 fs) was obtained in [192], 
where the pulse was additionally compressed to 13 fs in the 
second stage, i.e., the total compression was almost two 
orders of magnitude. Work [196] is also noteworthy for sev-
eral reasons. First, not two large-aperture mirrors were 
used, but several independently controlled mirrors, which 
made it possible to efficiently cool and align them. Secondly, 
Pin was close to Pcr, but the authors do not discuss this fact 
in any way. Third, the pulse duration Tout = 6.9 fs was 
obtained. The shortest pulse was obtained in [200]: Tout = 
5.3 fs. Although the authors indicate that Pin was less than 
0.5Pcr in this experiment, the value of Pin exceeded Pcr given 
by formula (12).

4. Free propagation of a laser beam

An alternative to waveguides is a bulk solid-state nonlinear 
element in which the laser beam propagates freely. The use of 
gases in this case is problematic due to their low nonlinearity 
and the impossibility of providing a large B-integral. For a 
solid-state nonlinear medium, the case of Pin < Pcr is of little 
interest because of the small value of Pcr, and therefore the 
only possibility is to use thin nonlinear plates with lengths 
L < Lcr. To avoid breakdown at a high radiation power, the 
beam diameter must be large enough: for multiterawatt and 
petawatt power, from 1 to 10 cm or more. Thus, the geometry 
of the nonlinear medium changes radically – from a long cyl-
inder to a thin disk. The increase in power, paradoxically, 
completely solves the problem of large-scale self-focusing. 
The point is that the focusing length Lcr at Pin >>  Pcr decreases 
as P /

in
1 2- , but grows as the square of the diameter, i.e., at a 

given intensity, Lcr increases (rather than decreases) in pro-
portion to   P /

in
1 2  [see (13 )]. In other words, the ratio Lcr /L 

grows in proportion to the beam radius w [see (14)], and for 
w > 1 mm, Lcr >>  L, i.e., LSSF can be neglected (here a solid 
nonlinear medium with a length of ~1 mm is implied). Note 
that for subpetawatt laser beams, Pin » 108Pcr.

Free propagation has three drawbacks compared to wave-
guide propagation. First, cross-section inhomogeneous spec-
tral broadening leads to inhomogeneous pulse compression: 
the compression factor F is proportional to the B-integral 
(11), which is proportional to the intensity. In particular, at 
the beam periphery, where the intensity is much lower than on 
the axis, the compression effect practically disappears. As a 
result, the value of F is less than that for the flat-top beam 
(11). This problem is pointed out in many papers [203 – 205] 
as the main limitation for SPM in the case of free beam prop-

agation. For relatively small beam diameters, the nonlinear 
phase incursion can be made more uniform by resorting to 
noncollinear propagation, which is the subject of Section 4.1. 
For collinear propagation (see Section 4.2), this problem 
can be solved using a nonlinear element in the form of a 
negative lens, in which L varies over the beam cross section 
[206,  207]. In addition, the estimates given in [8] showed 
that, compared with a flat-top beam, for a super-Gaussian 
beam with exponent m, the compressed pulse power Pout at 
large B decreases by a factor of 21/m, i.e., for m = 1 (Gaussian 
beam) Pout decreases two times, and for m = 4, only 1.08 
times.

Second, the inhomogeneity of the spatial phase leads to 
nonlinear distortions of the wavefront. This degrades the 
focusability by reducing the focal intensity. Near the beam 
axis, the phase is proportional to r2, and so it is convenient to 
divide the aberrations into two parts: parabolic and nonpara-
bolic. The former are characterised by the focal length of a 
‘nonlinear lens’ and, in fact, are not aberrations: it is enough 
to move the target closer to the focusing parabola. The diam-
eter of the focal spot and the intensity of the focused radiation 
will not change in this case. Nonparabolic aberrations, on the 
other hand, are difficult to compensate for and result in 
reduced intensity at the focus. Qualitatively nonlinear beam 
aberrations were analysed by Hunt et al. [208]. If we neglect 
the dispersion, then the phase distribution is proportional to 
the B-integral. Thus, in the approximation of small aberra-
tions, Perevezentsev et al. [209] obtained analytical formulae, 
which can be used to calculate the quantitative characteristics 
of aberrations – the parameter M 2 [210], the Strehl ratio [211], 
and the overlap integral. An analysis of these formulae 
showed [8] that the Strehl ratio S depends nonmonotonically 
on m. This is explained by the fact that as m increases, on the 
one hand, phase distortions ‘are pressed’ to the beam periph-
ery, and on the other hand, the number of parabolic distor-
tions decreases and the number of nonparabolic distortions 
increases significantly. To minimise aberrations, there is no 
need to strive for large values of m, because it is quite suffi-
cient to have m = 2, and for B < 6 (less than 10), the Strehl 
ratio S > 0.8 (more than 0.7), i.e., aberrations will lead to a 
decrease in intensity at the focus by no more than 20 % (30 %). 
For a Gaussian beam and for a super-Gaussian beam with m 
= 5 – 8, the decrease in the focal intensity is more significant, 
especially at large B, which leads to a necessity of using an 
adaptive mirror. Adaptive mirrors are employed in many 
high-power lasers, in which case only a change in their soft-
ware is required. Accounting for dispersion (both linear and 
nonlinear) greatly complicates the problem of nonlinear aber-
rations and their compensation, since the phase becomes a 
complex function of r and t – it cannot be represented as a 
product of functions of these parameters. A detailed numeri-
cal analysis of this problem is presented in [212]. Note that 
numerical simulations showed [31] that a super-Gaussian 
beam can be well focused at B = 48 and m = 8 even without an 
adaptive mirror.

Third, until recently it was assumed that effective com-
pression during collimated propagation is impossible due to 
SSSF, which leads to an increase in the amplitude of spatial 
perturbations of a plane wave in a medium with cubic nonlin-
earity [38]. In contrast to large-scale self-focusing, SSSF is 
present even in a plane wave (in a flat-top beam). Due to 
SSSF, the beam is split into a large number (on the order of 
Pin /Pcr) of filaments, which significantly degrade the quality 
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of the beam and, ultimately, lead to the breakdown of optical 
elements. The instability increment is determined by the 
B-integral; it was argued that at B > 2 – 3 the beam inevitably 
splits into filaments. At B = 3, the power – even theoretically (11) 
– can increase only by a factor of 2.5. This argument, which is 
valid for nanosecond pulses, was erroneously transferred to fem-
tosecond pulses (see, for example, Refs [165, 205, 213, 214]), and, 
unfortunately, continues to be repeated, including in recent 
reviews [16, 17]. Mironov et al. [215] demonstrated that 
high-power femtosecond lasers can effectively suppress 
SSSF by self-filtering the beam during propagation in free 
space, which served as a stimulus for experiments with col-
limated propagation. The issue of SSSF (for all geometries 
of a nonlinear element) and its suppression is considered in 
detail in Section 5.

The results of experiments with noncollinear free propa-
gation (NCFP) of a focused beam [83, 151, 182, 186, 216 – 229] 
and with a collimated beam (TFC/CafCA) [230 – 246] are 
shown in Figs 2 – 4 and are described in Sections 4.1 and 4.2, 
respectively.

4.1. Noncollinear free propagation (NCFP)

The first work in which compression was implemented 
noncollinear free propagation of a focused beam (NCFP) 
was published in 1988 [229]. To increase spatial homoge-
neity, it was proposed to place a diaphragm immediately 
after the nonlinear element, thus leaving only the paraxial 
region of the beam. The authors experimentally investi-
gated the trade-off between effective pulse shortening 
(minimum diaphragm size) and minimal energy loss 
(maximum diaphragm size). The results showed that 
quasi-homogeneous fourfold pulse compression is 
obtained when the diaphragm transmittance is no more 
than 25 % – 35 %. Nevertheless, the output power Pout was 
4  GW, three orders of magnitude higher than the record 
value at the time. In work [216], the beam was focused 
onto a nonlinear element by a cylindrical lens in such a 
way that soliton propagation was ensured in the smaller 
direction. However, the losses in this experiment were 
even greater. Mevel et al. [217] placed the diaphragm in 
the beam not immediately after the nonlinear element, 
but in the far field. This also led to a quasi-homogeneous 
compression of the pulse, with a diaphragm transmission 
being only 35 %. More than 50 % of the transmission was 
obtained with SPM in quartz after cleaning the beam in 
the filament in argon [218]. In this work, Pout = 30 GW; 
however, it is obvious that significant scaling of this idea 
is impossible.

Seidel et al. [219] studied in detail theoretically and exper-
imentally the restrictions on the pulse power in the case of a 
nonlinear element located in the focal plane or near it. In the 
same work, an alternative approach was proposed: to use sev-
eral non-linear elements. The thicknesses of the elements and 
the distances between them were chosen such that diffraction 
in free space was compensated for by self-focusing in nonlin-
ear elements. Thus, it was possible to accumulate a significant 
B-integral. The theoretical substantiation of this idea is pre-
sented by Vlasov et al. [247], who showed that a periodic 
structure of linear and nonlinear media (with lengths L and l 
and refractive indices n0 and 1, respectively) is a waveguide 
under the condition gPcr < Pin < 2gPcr, where g = n0(L + l )/L. 
Centurion et al [248] obtained numerically and experimen-

tally similar results; see also [249]. In contrast to SS-MPCs, 
the waveguide properties here are provided exclusively by 
nonlinearity, and no mirrors are used. A more flexible 
approach allows for nonperiodicity: both the thicknesses of 
nonlinear elements and the distances between them can be 
different.

Lu et al. [250] used several nonlinear elements to generate 
the supercontinuum, and Cheng et al. [251] reported a detailed 
theoretical study. In the first experimental implementation of 
this approach, for the purpose of compression [220], the beam 
passed through seven nonlinear plates; a power Pout = 
0.13 TW and a very high compression factor F = 5.6 were 
obtained. In subsequent papers [151, 182, 186, 221 – 226, 228], 
this approach was developed. In the second cascade, Lu et al. 
[223] demonstrated a record value F = 9.5 (pulse shortening 
from 30.6 to 3.21 fs). Note that, taking into account the first 
cascade, the pulse in this work was compressed from 170 to 
3.21 fs. The shortest pulse, Tout = 2.6 fs, was obtained in [224], 
which is an absolute record for all compression geometries. 
We note work [227], in which compression was implemented 
in the UV range at a wavelength of 308 nm using SPM in a 
CaF2 crystal.

The record power for NCFP was recently obtained by 
Stanfield et al. [226]: Pout = 0.15 TW (0.75 mJ, 7 fs), with the 
radiation intensity in the nonlinear element being 4 TW cm–2. 
Moreover, in the same work, at the same intensity, but 
with a sevenfold increase in the input energy, a spectrum 
was recorded for which the duration of the Fourier-
transform pulse was 8 fs. However, compression was not 
demonstrated due to the lack of chirped mirrors of the 
required aperture and optical damage threshold. Thus, the 
presently achieved parameters for noncollinear propaga-
tion are somewhat higher than those obtained using 
SS-MPCs, and in the near future they will reach the ter-
awatt level in both gas-MPCs and SF-HCFs. It is possible 
to radically increase the power up to petawatts by using 
SPM with collinear propagation.

4.2. Collinear propagation (TFC/CafCA)

For collimated beams, as applied to super-high power lasers, 
the term TFC (thin film compression) [7] or CafCA (compres-
sion after compressor approach) [4, 8] is used. A collimated 
beam was first used as early as 1976 with SPM in liquid (CS2) 
in [203], where the pulse was compressed from 96 to 6.9 ps. 
The idea of using of a collimated beam for compression of 
high-power femtosecond pulses at B < 3 was put forward by 
Mak and Yashin [213], who proposed to obtain large values 
of B by using several elements separated by spatial filters, 
which is difficult to implement in practice. Because of this, the 
idea was forgotten and rediscovered in patent [205] and anal-
ysed in detail in [166]. Vlasov et al. [165] showed that spatial 
filters can be abandoned, but the maximum value of B in one 
stage should be less than p/2, which also makes the idea 
impractical. Chvykov et al. [230] experimentally demon-
strated the broadening of the spectrum at B » 3, after which 
the attenuated pulse was compressed from 30 to 14 fs. Several 
works are devoted to the numerical simulation of SPM of 
super-high power pulses [7, 31, 233]. A detailed study was car-
ried out in [31], where the authors took into account not only 
all the effects described by Eqn (4), but also the ionisation 
nonlinearity, as well as the losses and dispersion introduced 
by the plasma formed during the ionisation of the medium by 
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the laser field. A Gaussian radiation pulse with a duration of 
120 fs, a power of 13 PW, a beam diameter of 40 cm, and a 
super-Gaussian intensity distribution (m = 8, I = 11 TW cm–2) 
was applied to the input of the nonlinear medium (fused sil-
ica). The simulation results showed that it is possible to com-
press the pulse to 25 fs with full dispersion compensation, and 
when using nine stages separated by eight spatial filters (which 
seems difficult to implement in practice), one can obtain a 
duration of 5.2 fs.

Ginzburg et al. [252] experimentally found that if the 
input pulse is not transform limited, then the nature of the 
broadened spectrum changes qualitatively: narrow peaks 
appear in the spectrum, and the broadening decreases. 
Detailed theoretical studies [8, 234, 252] showed that, despite 
this, such pulses can be compressed with almost the same 
compression factor as transform limited pulses.

As mentioned above, the inhomogeneity of the Gaussian 
beam leads to a twofold decrease in power compared to the 
flat-top beam. Lehmberg and McMahon [203] showed it 
numerically and the authors of [8] demonstrated it analyti-
cally. In order to ‘return’ this twofold decrease, Mironov et al. 
[206, 207] proposed to use a nonlinear element for SPM not in 
the form of a plane-parallel plate, but in the form of a nega-
tive lens. The lens parameters are chosen to minimise 
B-integral variations. The mirror then collimated the laser 
beam. This idea was implemented in works [231, 232] with a 
TF12 glass lens. In both papers, a compression factor F > 2, 
which is quasi-homogeneous over the beam cross section, was 
demonstrated. And in [232] Pout exceeded 10 TW, which is 
much larger than for all other compression geometries. It is 
important to note that in this work B = 6, but there was no 
SSSF as a result of using the method of beam self-filtering 
during propagation in free space proposed in [215] (see 
Section 5 for details).

In the following years, many experiments were carried 
out. In addition to silica, various polymeric nonlinear media 
have been studied [233, 234, 237, 243], which have a number 
of advantages: practically unlimited transverse size, thick-
ness up to 100 mm or less, low cost, and the ability to use a 
roller mechanism [237], which makes it possible to roll a 
polymer film in the case of its degradation. Today, the main 
advantage – small thickness – is not so in demand, since the 
restrictions on the B-integral are removed (see Section 5), 
and so the results obtained with silica are more impressive: 
Pout = 250 TW, Tout = 14.5 fs (2018) [235]; Pout = 1 PW, 
Tout = 15.5 fs (2020) [240]; and Pout = 1.5 PW, Tout = 11 fs 
(2021) [244].

Shaykin et al. [245] proposed to use a KDP crystal instead 
of silica. The lower the ratio of the medium dispersion k2 and 
nonlinear refractive index n2, the shorter the compressed 
pulse [8]; and for KDP (ordinary wave) at a wavelength of 
910  nm, the ratio k2 /n2 is much smaller than for silica. 
Experiments [245] confirmed the promise of KDP: although 
slightly, the results were improved, and record values for 
TFP/CafCA were obtained: not only Pout = 1.5 PW and F = 6, 
but also Tout = 10 fs. The experiments were carried out 
[244, 245] with the B-integral from 5 to 19, and no damage 
was found to the optical elements, which indicates the sup-
pression of small-scale self-focusing (see Section 5).

We also note the work by Kieffer et al. [246], who experi-
mentally demonstrated that at B » 3, nonlinear aberrations 
reduce the Strehl ratio by only 10 % even without the use of 
adaptive optics, which agrees with the theory [8].

5. Suppression of small-scale self-focusing  
in high-power laser beams

SSSF is a spatial instability of a plane wave propagating in a 
medium with cubic nonlinearity – an increase in the ampli-
tude of spatial harmonic perturbations [38]. The first experi-
mental observation [253] showed quantitative agreement with 
the theoretical predictions [38] and confirmed the qualitative 
difference between SSSF and LSSF. This theory was devel-
oped in the stationary approximation and experimentally 
confirmed in a large number of papers, including the fact that 
the instability increment is determined by the B-integral, the 
threshold value of which is approximately equal to 3. It has 
already been stated above that the argument that the beam at 
B > 2 – 3 inevitably splits into filaments, which is true for 
nanosecond pulses, is erroneous for femtosecond pulses. The 
consequence of this misconception is the opinion (see, for 
example, [16, 17, 165, 205, 213, 214]) about the impossibility 
of large compression factors that require large values of B 
(11), since the same parameter – B-integral – is both useful 
and harmful. Theoretical and experimental studies performed 
in the last few years show that this is not the case. In Section 5, 
we briefly discuss these results.

5.1. Beam self-filtering during free space propagation 

Mironov et al. [215] proposed a method for suppressing 
SSSF, the idea of which is as follows (Fig. 5). If the optical 
element is located at a large distance from the noise source, 
then the most ‘dangerous’ noise components (with q ~ qmax) 
emerge from the beam aperture (outgoing beams are shown 
by dashes). The main sources of noise are the surfaces of 
mirrors or diffraction gratings; therefore, by placing an 
optical element at a sufficient distance Lf from the last mir-
ror or grating, it is possible to remove ‘dangerous’ noise 
components from the region of interaction with a strong 
wave. For nanosecond lasers, the characteristic radiation 
intensity is a few GW cm–2, which gives qmax ~ 1 mrad and 
makes self-filtering in free space practically impossible due 
to the too high value of Lf. For femtosecond lasers, the 
intensity is a few TW cm–2, and the angle qmax is much larger 
– tens of mrad, which leads to reasonable distances Lf. Thus, 
free space is a spatial filter, the transmission coefficient of 

Lf ctdel

z

2w

q
qv/2

Figure 5.  (Colour online) Noise filtering during free space propagation. 
Part of the spatial harmonics (dashed blue rays) do not fall into the 
beam aperture. The time lag is shown in green.
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which for a flat-top beam is determined by the formula 
[8,  254]
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where qv = 2w/Lf is the viewing angle, and w is the beam 
radius.

Self-filtering of intense radiation was confirmed in Refs 
[215, 255] using qualitative experiments. In [215], when the fre-
quency was doubled in a KDP crystal at B = 6, filamentation 
and breakdown of the crystal were observed at a viewing angle 
qv = 40 mrad and were completely absent at qv = 10 mrad. 
Mironov et al. [255] measured the degradation of a 4-mm-thick 
glass plate after irradiation with 100 single-point pulses, and 
the results clearly confirmed the self-filtering effect at small 
viewing angles qv. Ginzburg et al. [256] confirmed the effect 
quantitatively: the spatial spectrum of the noise amplification 
factor was measured as a function of Lf. The measurements 
were performed by two independent methods: direct [42, 257] 
and indirect [257]. The beam passed through a thin (0.2 mm) 
slightly frosted glass plate introducing noise. A glass plate 10 
mm thick served as a nonlinear element. Both the direct and 
indirect methods gave good agreement with the theory. Note 
that, for narrow beams, self-filtering occurs at very small Lf (on 
the order of 50 mm at w = 1 mm and 0.5 mm at w = 10 μm), as 
if by itself as one can say, as was first pointed out by Lehmberg 
and McMahon [203]. This is the reason for the absence of SSSF 
with SPM in fibres and capillaries.

For short pulses, free space is also a temporal filter sepa-
rating noise radiation from the main one not in space, but in 
time. Since noise radiation propagates at an angle to the z 
axis, it lags behind the main pulse. If the delay time tdel is com-
mensurate with the pulse duration Tin, then its maximum will 
‘meet’ the leading edge of the noise, which is equivalent to 
noise reduction (Fig. 5). Assuming that the pulse has a 
Gaussian shape, it is easy to obtain the transmission of such a 
filter

exp lnT
L
N

2time
f

2 2

l
q

= - c m= G; 	 (17)

Ttime is independ of the beam aperture, but depends on the 
duration, while Tspace does the opposite. Note the very sharp 
dependence of Ttime on the angle q in (17).

5.2. Noise spectral density reduction at large angles

Another positive consequence of the large value of qmax is the 
fact that the noise spectral density obviously decreases with 
increasing q. The shapes of the spectrum, as well as the spec-
tral noise densities for amplitude and phase noise, differ. The 
amplitude noise is caused by optical defects leading to zero 
intensity at some points of the beam cross section: dust par-
ticles and scratches. The reason for phase noise is the distor-
tion of the wavefront introduced by the optical elements. The 
inhomogeneity of the refractive index is usually large-scale 
and does not contribute much to the noise at high spatial fre-
quencies, while the surface profile of optical elements, on the 
contrary, contains the entire spectrum. The spectral noise 
density is determined by the spectral density of the surface 
profile. Ginzburg et al. [254] performed calculations for model 
spectra of amplitude and phase noise. The results showed that 
this effect can significantly reduce SSSF; however, the quanti-

tative results strongly depend on the law of spectral density 
reduction, which requires an experimental study.

5.3. Increasing the critical angle of SSSF

As shown above, an increase in qmax makes it possible to sup-
press the development of SSSF. In other words, it is advanta-
geous to increase qmax, which, according to (15), can be done 
by increasing intensity or media with larger n2. Many crystals 
(KDP, YAG, TGG, and BBO) have two to three times higher 
n2 than fused silica. It may be promising to use a paratellurite 
crystal, in which n2 is 21 times greater than that of fused silica 
[258]. However, this will require the manufacture of very thin 
samples, which is not so simple. Polymer media are free of this 
shortcoming; their thickness can be 100 mm or less. The value 
of n2 in some polymers is two to three times greater than that 
of fused silica [243, 259], but given the wide variety of poly-
mers, materials with even higher n2 can be expected.

The authors of Ref. [8] drew attention to the fact that the 
installation of a nonlinear element at a grazing angle of inci-
dence is equivalent to an increase in qmax, since the ratio 
between the internal and external angles changes. In particu-
lar, if the angle of incidence is equal to the Brewster angle, the 
effective value of qmax will be equal to n0 qmax. At even larger 
angles of incidence, the gain will be even greater. We note that 
usually media with a large n2 also have a large n0, and to 
increase qmax it is advantageous to increase both refractive 
indices, with qmax being proportional to n2

1/2 n0
3/2 at the Brewster 

angle of incidence. For example, for a TGG crystal, the gain 
compared to silica will be almost four times.

5.4. Fragmentation of a nonlinear element

Fragmentation of a nonlinear element is the replacement of 
one element with M elements with the same total length L 
without repeaters or spatial filters between them. For large 
values of qmax – tens of mrad – the noise phase incursion in 
free space reaches 2p at distances Lf of about 1 mm. 
Therefore, at distances between nonlinear elements of 1 cm 
or longer, the noise phase at the input to each nonlinear ele-
ment can be considered random. In this case, the total gain 
in M nonlinear elements will be equal to the product of the 
gains in each, which is less by approximately 2M – 1 times 
than for one element of length L [8]. Even greater SSSF sup-
pression can be achieved by using nonlinear elements with 
significantly different n2 or I (in the latter case, a convergent 
or divergent beam should be used). Noise gain maxima in 
two (or more) nonlinear elements will be reached at signifi-
cantly different values of q, due to which the product of the 
gains will be less than for one element of length L.

Note that fragmentation makes it possible to suppress 
SSSF due to phase effects as well. By changing the distances 
between the elements, it is possible to change the noise phase 
at the input to the second nonlinear element, thereby con-
trolling the noise gain [39]. In optical systems consisting of a 
periodic sequence of linear and nonlinear media, it is possi-
ble to suppress SSSF not for all, but for many angles q 
[40,  260, 261]. It is more efficient to use non-equidistant 
geometry, in which the thicknesses of nonlinear elements 
and the distances between them are different, which was 
observed experimentally [262, 263] and was explained theo-
retically [262, 264]. In all these works, SSSF of nanosecond 
pulses was studied.
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5.5. SSSF suppression due to nonlinear dispersion

Balakin et al. [33, 34] studied the development of SSSF for 
laser pulses with a small number of field oscillations. They 
showed analytically that the homogeneous solution remains 
unstable, but the type of instability changes, i.e. it becomes 
convective. They also demonstrated numerically that for laser 
pulses with a duration shorter than a certain value, SSSF does 
not develop. Physically, this is explained by the fact that the 
intensity perturbations, having a lower group velocity, lag 
behind and shift to the trailing edge of the pulse, where the 
intensity is much lower and their growth slows down. An esti-
mate of the pulse duration at which the growing perturba-
tions are stabilised as a result of their shift to the trailing edge 
of the pulse gave a value on the order of ten cycles of the laser 
field oscillations. Thus, for short pulses, a SSSF suppression 
mechanism is predicted that does not require any special 
efforts and devices. Experimental confirmation of the effect 
of SSSF suppression due to nonlinear dispersion has not yet 
been demonstrated. 

6. Conclusions

Table 1 summarises the most important aspects of the com-
pression of femtosecond laser pulses using self-phase mod-
ulation for eight variants of the nonlinear medium geome-
try. Figure 2 shows that currently the most dynamically 

developing variants for using SF-HCF, gas-MPC and 
TFC/CafCA. It is in these variants of geometry that fur-
ther progress should be expected in the coming years. One 
can see from Table 1 and Figs 2 – 4 that, in applications to 
super-high power lasers, the use of TFC/CafCA is the only 
option for pulse compression. It is also important to note 
that although this is the cheapest and simplest technology 
(see Fig. 1), it has virtually no power limit. Let us briefly 
list the most relevant areas for further research on TFC/
CafCA technology.

1. Despite a number of studies, including experimental 
confirmation of SSSF suppression up to B = 19 [244, 245], 
there is still no complete understanding of all the mechanisms 
of this suppression (see Section 5).

2. The optical damage threshold of nonlinear elements, in 
which the emission spectrum is broadened, is greater than 
that of compressor diffraction gratings, and therefore it is not 
a power limitation, but the optical damage threshold of 
chirped mirrors may become such a limitation in the future. 
In this regard, it is of interest to develop the technology of 
wide-aperture chirped mirrors with a high breakdown thresh-
old, as well as alternative dispersive elements [265].

3. The study of the beam focusing quality, including with 
the help of an adaptive mirror, has practically only begun (see 
Section 4) and, despite encouraging results [8, 31, 212, 246], 
requires further theoretical and experimental studies.

4. As can be seen from Figs 3, 4, the range of pulse dura-
tions mastered with the help of TFC/CafCA is relatively nar-

Table  1.  Comparison of different SPM geometries.

Continuous waveguide Discrete waveguide
Free propagation

Fibre (SMF) Capillary (HCF) Herriott multipass cell (MPC)

SMF-TIR SMF-PCF TW-HCF SF-HCF SS-MPC gas-MPC NCFP TFC/CafCA

Power increase limitations

SSSF yes no yes yes yes no yes no

LSSF no no no no no no yes yes

Optical breakdown yes yes yes yes yes no yes no

Inhomogeneity no no no no no no yes yes

Typical parameters

Nonlinear medium solid solid/gas gas gas solid gas solid solid

Critical power Pcr 3 MW – 30 GW 30 GW 3 MW 30 GW 3 MW 3 MW

Breakdown threshold Pbr 10 MW 100 MW 100 GW 100 GW 10 GW 100 GW 100 GW >10 PW

Input power Pin 1 MW 30 MW 30 GW 30 GW 100 MW 10 GW 30 GW TW – PW

Input energy 1 mJ 30 mJ 3 mJ 3 mJ 10 mJ 10 mJ 0.3 mJ 0.1 – 10 J

Beam radius w/mm 0.01 0.03 0.3 0.5 1 0.5 1 30

Number of modes one many many many one one one one

Records

Output power Pout
100 MW 
[64]

1.5 GW 
[58]

1.2 TW 
[127]

1.6 TW 
[155]

0.7 GW 
[184, 187]

2.9 TW 
[195]

0.13 TW 
[220, 223]

1.5 PW 
[244, 245]

Output duration Tout/fs 4.6 [60] 4.4 [76] 3.4 [120] 3.4 [154] 17 [186] 5.3 [200] 2.6 [224] 10 [245]

Compression factor  
F = Tin /Tout

80 [94] 24 [84] 18 [144] 48 [156] 10.8 [187] 37.5 [192] 9.6 [223] 6 [245]

Papers

Idea [90] [84] [98, 99] [107] [165, 166] [169] [229] [203, 213]

First experiment [49] [84] [98, 99] [147] [176] [188, 189] [229] [230]

All experiments [49 – 69] [70 – 89]
[98, 100, 106, 
108 – 146]

[147 – 159] [176 – 187]
[125, 
188 – 200]

[83, 151, 182, 
186, 216 – 229]

[230 – 246]

Reviews – [48] [6, 16] [16] [17] [17] [8]
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row: the maximum Tin = 126 fs, and the minimum Tout = 
10 fs. Extremely promising is both advancement to durations 
of one field cycle, which opens up a new way for petawatt 
lasers, and compression of picosecond pulses, which will 
make it possible to significantly increase both the compres-
sion factor F and the output power Pout.

5. Search for new non-linear media (polymer, glass, crys-
talline) is needed, which will improve the compression param-
eters, for example, due to a large ratio of the nonlinear refrac-
tive index n2 to the dispersion k2.
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