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Abstract.  We analyse the electric field transverse distributions in 
light beams with a tripled frequency and with a frequency of 2w1 – 
w2, which arise in the bulk of an isotropic cubic-nonlinear medium 
upon the propagation of nonuniformly polarised beams of funda-
mental radiation with a multimode transverse structure described 
by a superposition of Laguerre – Gaussian modes. A relation is 
found between the total topological indices of the circular polarisa-
tion singularity points in the transverse sections of the generated 
signal beams and the corresponding total indices in the beams of 
fundamental radiation.

Keywords: cubic nonlinearity, polarisation singularity, topological 
index.

1. Introduction 

In 1950, S.I. Vavilov predicted that “…birefringence, dichro-
ism and rotational polarisation strength depend on the light 
intensity” [1]. The intensity-dependent self-rotation of the 
polarisation ellipse, which increases with increasing degree of 
ellipticity in an incident plane wave and completely vanishes 
for linearly polarised light, was first observed by R. Terhune 
(Ford Motor Company, USA) [2] in 1964 in a medium with 
cubic nonlinearity. S.A.  Akhmanov and V.I.  Zharikov 
(Department of Physics, Lomonosov Moscow State University, 
USSR) in 1967 predicted the effect of nonlinear optical activ-
ity [3], i.e., intensity dependence of rotation of the polarisa-
tion plane of linearly polarised light incident on a medium 
with spatial dispersion of cubic nonlinearity. These studies 
stimulated further development of nonlinear polarisation 
optics.

Theoretical and experimental studies carried out to date 
allow a definite statement that the effects of polarisation self-
action and wave interaction belong to subtle and widespread 
effects of nonlinear optics. A wave in devices of quantum elec-
tronics is generally elliptically polarised, and the degree of its 
ellipticity and the angle of inclination of the polarisation 
ellipse major axis can change when propagating through non-
linear crystals, reflecting from smooth surfaces, due to dif-

fraction and dispersion effects. Moreover, when light beams 
interact in nonlinear media, their polarisation can change dif-
ferently at different points of the cross section. In a number of 
cases, in an elliptically polarised pulse at the output of a non-
linear medium, it is possible to indicate its separate parts, in 
which the degrees of ellipticity differ significantly, the electric 
field vectors rotating in them in opposite directions. 

An extensive list of spectroscopic schemes for the study of 
matter includes methods based on fixing changes in the polar-
isation states of waves during their interaction in a nonlinear 
medium. Being one of the most advanced, polarisation mea-
surements make it possible to register rather weak changes in 
the degree of ellipticity and the angle of the major axis rota-
tion of the signal wave polarisation ellipse and, therefore, to 
obtain high-accuracy spectroscopic data that are inaccessible 
to other research methods. The use of specially selected ellip-
tically polarised waves of the fundamental radiation makes it 
possible to suppress the contributions of individual compo-
nents of local, nonlocal, and surface nonlinear susceptibilities 
to the intensity and polarisation of the signal wave arising in 
the experiment. 

In its development, nonlinear polarisation optics encoun-
tered singular optics that studies, in particular, singular points 
of the phase and polarisation of electric field. The former 
arise in a field uniformly polarised in space at points of its 
zero intensity. At these points, the field oscillation phase is 
indefinite. The points of phase singularity are characterised 
by the topological index IU , which is equal to the change in 
the phase of field oscillations normalised to 2p during a 
roundtrip of the point along a small closed loop, which lies in 
a plane perpendicular to the direction of radiation propaga-
tion. Points of polarisation singularities arise in nonuniformly 
polarised harmonic light fields; at these points, indefinite is 
one of the polarisation ellipse characteristics. Generally, in 
non-paraxial electromagnetic fields, the polarisation ellipse is 
uniquely specified by two scalar and two vector quantities: 
the intensity, |E|2, the degree of ellipticity, M = |E* ́  E|/|E|2, 
the normal vector to the ellipse plane, n = Im{E* ́  E}, 
and  the  bidirectional vector (director) of its major axis, 

{ ( ) / }ReA E EE EE*!=x . Here Е is the vector complex 
amplitude of a harmonically changing electric field. Using the 
bidirectional vector Ax  is more convenient for determining the 
orientation of the major axis of the ellipse, since it does not 
have a preferred direction. 

The vectors n and Ax  are defined not for all states of polar-
isation of the electromagnetic field. If the polarisation ellipse 
turns into a circle (M = 1), the director Ax  becomes indefinite, 
and if the polarisation is linear (M = 0), then the notion of a 
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normal to the ellipse plane loses sense. The points in space 
where this occurs form isolated lines known as CT and LT 
lines, or singularity lines of circular and linear polarisation, 
respectively [4]. In their vicinity, n and Ax  change their orien-
tation in space in a complicated way.

This is particularly pronounced in nonparaxial electro-
magnetic fields, where the isotropy parameters [5] are used to 
characterise polarisation singularities: 
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for LT points. They generalise the topological index of the 
polarisation singularity, which is widely used in the study of 
singularity points in paraxial light fields. The index IC is equal 
to the change in the major axis orientation angle of the polar-
isation ellipse normalised to 2p upon passing around the sin-
gularity along a small closed loop, which lies in the plane per-
pendicular to the direction of radiation propagation. In Eqns 
(1) and (2), ¶ ¶ ¶( , , )x y z4=  is a differential operator; Dij = 
E E*
i j /|E|2 and ¶{ ( ) }ImT EEE *

ij j i=  are tensors (in the lat-
ter, the root sign is chosen arbitrarily); dij and eijk are the 
Kronecker and Levi – Civita tensors; the summation is carried 
out over repeated indices i, j, l, m, p, q Î {x, y, z}; and x, y, 
and z are coordinates in an arbitrarily chosen Cartesian coor-
dinate system.

The isotropy parameters coincide in sign with the topo-
logical indices of the patterns formed by the projections of the 
polarisation ellipses near the singularity points onto a spe-
cially chosen plane. For singularity points of circular polari-
sation, this plane coincides with the plane of rotation of the 
electric field strength vector, and for points of linear polarisa-
tion, it is perpendicular to the direction of oscillation of this 
vector. Polarisation singularities are also additionally charac-
terised by the parameters 
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(for LT points), which are related to the spatial distribution of 
Ax  and the director perpendicular to it, which specifies the ori-
entation of the minor axis of the polarisation ellipse, in a 
neighbourhood of the singularity point. 

Polarisation singularities are resistant to small perturba-
tions of the electromagnetic field and transform during its 
propagation according to strictly defined laws [6]. The stream-
lines of the Umov – Poynting vector near the points of phase 
or polarisation singularity have a vortex structure; therefore, 

the study of optical singularities is closely related to the 
branch of optics that studies the transformation of the angu-
lar momentum of electromagnetic radiation (and separately 
its orbital and spin components) during propagation [7]. 

Few works are devoted to nonlinear processes in which 
polarisation singularities arise or interact. We can mention 
the analysis of the stabilisation of the propagation of a light 
beam with a polarisation singularity on its axis [8], the study 
of polarisation singularity formation during the propagation 
of circularly polarised radiation in a uniaxial KDP crystal, 
the symmetry of which is broken by an external electric field 
[9], and the classical nonlinear optical problem of second har-
monic generation in a KTP crystal using radiation with a 
polarisation singularity [10]. The electric field of a third har-
monic beam arising in an isotropic medium with cubic nonlin-
earity in the process of propagation of a monochromatic light 
beam containing a polarisation singularity of an arbitrary 
type is determined. The relationship between the characteris-
tics of CT points in the main and signal beams and the influ-
ence of wave vector detuning on the shape of CT lines in a 
tripled-frequency beam is found [11]. 

From the point of view of singular polarisation optics, of 
particular interest are media with a nonlocal nonlinear optical 
response, which is exceptionally sensitive to the state of polar-
isation of the propagating light. The formation of nonuni-
formly polarised light beams in such media was theoretically 
predicted earlier [12 – 17] even in the case when the fundamen-
tal radiation beams have a Gaussian transverse profile and 
uniform polarisation.

Recently, the specificity of some nonlinear optical pro-
cesses involving beams with polarisation singularities in these 
media has been studied. In Ref. [18], the ranges of ellipticity 
degree values for uniformly polarised fundamental radiation 
pulses propagating coaxially in an isotropic gyrotropic 
medium are determined, at which the change in the angle 
between the major axes of polarisation ellipses determines the 
total topological index of circular polarisation singularities 
arising in the sum frequency pulse generated in the volume of 
the medium. It was found [19, 20] that in the course of propa-
gation of a light beam, consisting of a left-hand polarised 
Gaussian mode and two coaxial right-hand polarised first-
order Laguerre – Gaussian modes, through an isotropic gyro-
tropic medium (limiting symmetry group ¥¥) with spatial 
dispersion of the quadratic nonlinearity, the ellipticity degree 
modulus of the emerging second-harmonic radiation is equal 
to the modulus of the isotropy parameter of the polarisation 
singularity located at the axis of the fundamental radiation 
pulse propagation. 

A striking example of an experiment in such media was 
the detection of interference between the processes of three-
wave and five-wave mixing during the generation of the sec-
ond harmonic by femtosecond laser pulses [21]. In Ref. [22], 
for the ellipticity degree of a Gaussian beam normally inci-
dent on the surface of an isotropic gyrotropic medium with a 
spatial dispersion of quadratic nonlinearity, analytical expres-
sions were obtained, in which a polarisation singularity line is 
present in any cross section of the reflected beam at a doubled 
frequency. It is shown that if a beam of fundamental radia-
tion normally incident on the boundary of an isotropic gyro-
tropic medium with a spatial dispersion of quadratic nonlin-
earity contains a solitary polarisation singularity on its axis, 
then the number of polarisation singularities and their total 
topological index in the reflected doubled-frequency beam are 
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determined by the absence or presence of a nonlinear response 
of the near-surface layer of the medium [23, 24]. It is found 
that the propagation of a Gaussian light beam having a uni-
form elliptical polarisation at the boundary of a medium with 
a cubic nonlinear response (electronic or orientational) can be 
accompanied by the formation of closed circular polarisation 
singularity lines that lie in planes perpendicular to the beam 
axis [25]. It was demonstrated that, upon self-focusing of an 
elliptically polarised Gaussian beam in the isotropic phase 
of a nematic liquid crystal near the mesophase transition 
temperature, polarisation singularities of its electric field are 
generated in the interior of this crystal for almost any polar-
isation of the incident radiation [26]. The main results of 
Refs [11, 18 – 20, 22 – 26] are presented in more detail in brief 
review [27].

Below, for the first time, we present the results of a study 
of the interaction of polarisation singularities in the case of 
nonlinear mixing of waves with frequency conversion in a 
medium with cubic nonlinearity. The process of third har-
monic generation in an isotropic medium by a nonuniformly 
polarised beam of fundamental radiation, whose transverse 
structure is a superposition of circularly polarised Laguerre –
Gaussian modes, is considered. We also analyse the transfor-
mation of polarisation singularities during the generation of 
radiation at a frequency of 2w1 – w2 in a medium with spatial 
dispersion of cubic nonlinearity in the case of collinear inter-
action of two such beams with frequencies w1 and w2. 

2. Third harmonic generation 
in a bulk isotropic medium 

Let a paraxial monochromatic light beam propagate in a bulk 
isotropic medium. Let us direct the z axis of the cylindrical 
coordinate system rjz along its axis and write the equation 
for slowly varying complex amplitudes ( , , )E r zj!  of its right- 
and left-hand polarised components:

¶2 0,ik E Ez D+ =! !=~ 	 (5) 

where ¶ ¶ ¶r r1 2
r r
2 2D = + += {

- - ; kw = wnw/c is the wavenum-
ber; nw is the real-valued refractive index of the medium at 
frequency w; and c is the speed of light in vacuum. We repre-
sent its solution as 

( , , ) ( / , , ( )),E r z c r w z( )

,
nl n

l

n l

j j bL=! !/ 	 (6)

where cnl ± are the complex coefficients determined by the ini-
tial conditions; n and l are integers, n ³ 0; w is the character-
istic transverse size of the beam; b(z) = 1 + i(z – z0)/zw; z0 > 0 
is the beam waist coordinate in the medium; and zw = kww2/2 
is the beam diffraction length. In (6), the functions
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define the transverse modes of the beam. Here r = r/w, and  
L( )

n
l  are generalised Laguerre polynomials.
It was shown in Ref. [20] that the beams, which are simi-

larly polarised at any point of the cross section and are 
expressed by the right-hand side of Eqn (6), contain phase 
singularity points in their cross section, at which the field 

intensity turns into zero. The total topological index IU  of 
these singularities is defined as the field phase change nor-
malised to 2p, calculated along the closed contour G , which 
embraces all singular points in the beam cross section: 
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where E is a slowly varying scalar amplitude of a uniformly 
polarised beam. The total topological indices I !U  of the phase 
singularities of the E± components of form (5) can be found 
separately [20] by rearranging the terms in Eqn (6): 
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Here p!u  is the highest degree of the corresponding polyno-
mial at the exponential function in Eqns (6), (7). The form 
of  the functions aps±(z) is determined by the coefficients 
cnl± and the coefficients that enter the Laguerre polynomials 
(see [20]).

The values of I !U  in this case are determined by simple 
relations

2I N p= -! ! !U u 	 (10)

where N± is the number of complex roots of the equation 
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satisfying the condition |u| < 1, and, in fact, do not depend 
on the coordinate z, since the functions ( )a zp s! !u  depend on 
z in a similar way (see Ref. [20] for details). In our case, the 
beam under consideration is nonuniformly polarised, and 
each point of the phase singularity of the component E+ 
(or E–) with a specific value of the topological index I corre-
sponds to a singularity point of the left-hand circular (or 
right-hand circular) polarisation with the topological index 
I/2 (or –I/2) [6]. As a result, the total topological indices of the 
right-hand (IC+) and left-hand (IC–) circular polarisation sin-
gularities in the beam at the frequency w are determined by 
the relations

0.5 .I IC "=! "U 	 (11)

The problem of third harmonic generation in a bulk iso-
tropic medium is classical for nonlinear optics due to the rela-
tive simplicity of its solution and the beauty of the results 
obtained [11, 28, 29]. It is important to emphasise that in the 
volume of an isotropic medium it is impossible to implement 
it with a circularly polarised beam of fundamental radiation, 
because circularly polarised components of the nonlinear 
polarisation field P ( )3

!
~  of the substance at triple frequency 

are proportional to the product of amplitudes E+E–: 

,P E E E( ) (3)3 c=! !
~

+ - 	 (12)

where c(3) is a constant specifying all nonzero components of 
the isotropic medium material tensor (3 ; , , ),( )

ijkl
3c w w w w  sym-
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metric with respect to the permutation of the last three indi-
ces. Substituting (6) into (12) allows writing equations for 
slowly varying complex amplitudes E3±(r, j, z) of the circu-
larly polarised components of the electric field of the third 
harmonic beam arising in a nonlinear medium: 

¶2ik E Ez3 3 3D+! !=~

	 4 [ (3 ) ] .exp in P k k z( )
3
2 3

3p=- -!~
~

~ ~
- 	 (13)

Here  k3w = 3wn3w/c; n3w is the real-valued refractive index of 
the medium at a frequency of 3w; we neglect the back effect of 
the beam at the tripled frequency on the fundamental radia-
tion beam. The solution of Eqns (13) with the initial condi-
tions E3±(r, j, z = 0) = 0 is well-known and can be written in 
terms of the Green function. 

The determination of the total topological indices I 3!U  of 
the phase singularities of the found components E3± and, 
therefore, the total topological indices IC3!  of the polarisation 
singularities in the tripled-frequency beam, at first glance, 
seems to be a qualitatively more difficult problem, since the 
solutions of Eqns (13), even in the simplest cases, can be writ-
ten only in quadratures [11, 28]. However, in Ref. [20], where 
an equation absolutely similar to Eqn (13) was studied, it was 
shown that the indices I 3!U  of the components of the gener-
ated signal beam field E3± are equal to the corresponding 
total indices of the components of the generating nonlinear 
polarisation field P ( )3

!
~ . The latter are easily found due to the 

exceptional simplicity of Eqns (12), as well as the fact that the 
total topological index of phase singularities of a field propor-
tional to the product of several fields is equal to the sum of the 
total topological indices of phase singularities of each field in 
the product (see the last expression in the definition (8)). 
Thus, taking Eqns (11) into account, we finally obtain the 
relations: 

2 2 .I I I I I IC C C3 3&= + = +! ! " ! ! "U U U 	 (14)

Formulae (14) obtained for an arbitrary transverse structure 
of the main radiation beam confirm the results of Ref. [11], in 
which a particular case was considered, when the circularly 
polarised components of the fundamental radiation beam 
were
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where EL and EG are constants that determine the amplitude 
ratio of the circularly polarised beam components. Its left-
hand polarised component is an ordinary Gaussian trans-
verse mode, and its right-hand polarised component is a lin-
ear combination of two Laguerre – Gaussian modes with indi-
ces +1 and –1. As a result, the fundamental radiation beam 
contains a left-hand circular polarisation singularity on its 
axis. The constants p and q satisfying the normalisation con-
dition |p|2 + |q|2 = 1, in accordance with Eqns (1) and (3), 
determine its characteristics

, ( ( ) ) .argp q q p0 0C C
2 2 3hY = - = * 	 (17)

An example of polarisation distribution in the cross sec-
tion of such a beam is shown in Fig. 1a. The shape, relative 
size, and orientation of the polarisation ellipses are deter-
mined by the values of the beam electric field strength at spa-
tial points coinciding with their centres. Filled and empty 
ellipses correspond to the right-hand and left-hand directions 
of electric field rotation; pluses and crosses, respectively, 
mark the polarisation singularity points with a positive and 
negative index. Naturally, the knowledge of the values of the 
total indices IC3!  allows determining neither the number, nor 
the position and characteristics of polarisation singularities in 
the tripled-frequency signal beam cross sections. The analysis 
[11] of the expressions for E3±(r, j, z), obtained by solving 
Eqn (13) analytically, showed that the signal beam contains 
one right-hand polarisation singularity point on the beam 
axis and two left-hand polarisation singularity points. The 
segment connecting them in any cross section of the beam 
crosses its axis and is divided in half at the point of intersec-
tion. Identical to each other in characteristics, these singular-
ity points move in the cross section of the beam as it propa-
gates (as the z coordinate increases). Thus, for 0C0 2Y , 
which corresponds to the situation IC– = 1/2, IC+ = 0, we 
obtain the values IC3+ = –1/2, IC3– = 1 (this is confirmed by the 
polarisation distribution shown in Fig. 1b in one of the cross 
sections of a beam generated in the bulk of the medium at a 
tripled frequency). 

In the present work, by solving the equations for 
E3±(r, j, z) = 0 numerically, we not only determined the 
positions of singular points in the signal beam, but also 
found the dependence of the parameters CY  and hC, charac-
terising the distribution of polarisation ellipses near them, 
on the coordinate z . It is noteworthy that not only the topo-
logical indices of the generated polarisation singularities, 
but also their isotropy parameters CY  remain unchanged in 
the process of third harmonic generation and are equal to 

C0Y  ( )C0Y-  for the generated singularities having the left-
hand (right-hand) circular polarisation. In turn, the param-
eters hC change with increasing z, and these dependences are 
shown in Fig. 1c.

3. CARS signal generation in the bulk 
of an isotropic medium 

Another example of a four-wave process that is possible in an 
isotropic nonlinear medium is the interaction of two light 
beams of fundamental radiation with frequencies w1 and w2, 
accompanied by the generation of a signal beam having the 
frequency wa = 2w1 – w2. Such interaction of waves underlies 
coherent anti-Stokes Raman spectroscopy (CARS) [30]. 

Let us consider the collinear geometry interaction of the 
fundamental radiation beams in the approximation of their 
independent propagation along the z axis. In this case, the 
change in the slowly varying complex amplitudes Em± (here-
inafter, m = 1, 2) of the circularly polarised components of the 
electric field of each beam is described by the linear diffrac-
tion equations: 

¶2 0.ik E Em z m mD+ =! != 	 (18)

As in the previous section, we present their solutions as 
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( , , ) ( / , , ( )) .E r z c r w z( ) ( )
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All quantities entering Eqns (18), (19) are defined simi-
larly to those in Eqns (5), (6), and the index m indicates that 
the corresponding quantity (e.g., km, wm, bm, etc.) is related to 
the mth beam. The multimode transverse structure of funda-
mental radiation waves leads to the appearance in their cross 
sections of phase singularity points of the circularly polarised 
components Em±. In this case, the total topological indices 
IF m± of individual components, as well as the total topologi-
cal indices of the polarisation singularities of the vector fields 
of the beams IC m±, are determined by relations similar to (10) 
and (11). We emphasise that the structures of the fundamen-
tal radiation beams can be not at all related with each other 
and that the maximum values of pm!u  for the powers of r at 
the Gaussian exponential functions in the expressions for 
their amplitudes [see Eqn (9)] can be different.

The search for the slowly varying amplitudes Ea±(r, j, z) 
of the circularly polarised components of the signal beam 
electric field at the frequency wa implies knowing the circu-
larly polarised components of the nonlinear polarisation of 
the substance ( )P ( )a

aw! , which are easily obtained from the 
constitutive equation [31]: 

P E E E( ) *a
i ijpl j p l1 1 2c=
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2
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In Eqn (20), subscripts i, j, p, and l take the values x and y; 
the  tensor cijpl(wa; w1, w1, – w2) describes the local response 
of  the  medium; and two tensors ( ; , , )( )

aijzlp
1

1 1 2g w w w w-  and 
( ; , , )( )

aijzlp
2

2 1 1g w w w w-  describe the spatial dispersion of the 
cubic nonlinearity. Taking into account (20), P ( )a

!  have the 
form
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In Eqns (22) and (23), c1, 2 are constants defining nonzero 
components of the tensor cijpl (wa; w1, w1, – w2); ,

( )
1 4
1g  are two 

of the six constants that determine the nonzero components 
of the tensor ( ; , , )( )

aijzlp
1

1 1 2g w w w w- ; and ,
( )
1 4
2g  are two of the 

four constants defining all nonzero components of the tensor 
( ; , , )( )

aijzlp
2

2 1 1g w w w w- , symmetric with respect to permutation 
of the last two indices. When writing a± and b±, we corrected 
inaccuracies in formulae (10) and (11) in [31], which do not 
affect the formulae that follow from them and the formulated 
results.
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Figure 1.  Polarisation distributions (a) in the beam waist of the fundamental radiation and (b) in the beam cross section at a tripled frequency, in 
which polarisation singularity points with a positive and negative index are indicated by pluses and crosses, respectively, as well as (c) the depen-
dence on the z coordinate of the parameter hC, characterising the distribution of polarisation ellipses near the singularity point of the right-hand 
polarisation (solid line) and one of the singularity points of the left-hand polarisation (dashed line).
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To find the values of the total topological indices of phase 
singularities of each of the components P ( )a

!  and, therefore, 
the values of IFa± and ICa± for the electric field at the fre-
quency wa is a much more difficult problem compared to the 
case of third harmonic generation considered above. This is 
because Eqn (21) includes a linear combination of products 
E E1

*
2+ +  and E E*

1 2- - . However, the values of the total indices 
will be affected generally by only one of them, which occurs to 
contain the maximum power of r before the Gaussian expo-
nential function after substituting into these products the 
explicit form of E1± and E2±. The choice of one product or 
another is thus determined by comparing the sums p p1 2++ +u u  
and p p1 2+- -u u . If the first of them is greater than the second 
one, then it is the product E E1

*
2+ +  that will determine the 

total topological singularity index of each of the fields given 
by the expressions in square brackets in Eqn (21). As a result, 
in this case

,I I I I1 2 1a = - +! !U U U U+ + 	 (24)

( ) .I I I I1 2 1Ca C C C!= -! ! - - 	 (25)

If, however, the inequality p p1 2+- -u u  > p p1 2++ +u u  holds, then 
we obtain the relations slightly different from (24) and (25): 

,I I I I1 2 1a = - +! !U U U U- - 	 (26)

( ) .I I I I1 1 2Ca C C C!= -! ! + + 	 (27)

It is easy to show that the minus sign before IF2± arises due to 
the complex conjugation of the beam field components at the 
frequency w2 in Eqn (21). 

A special case when the sums p p1 2+- -u u  and p p1 2++ +u u  are 
equal deserves a separate discussion. In this case, the two 
terms in brackets in (21) have equal maximum powers of the 
coordinate r before the Gaussian exponential function, and it 
is possible to determine the values of IFa± only by applying to 
Eqn (21) a procedure similar to that described by Eqns (9) 
and (10). In this case, in contrast to the considered above, no 
unambiguous relationship exists between IFa±, IFm±, and the 
numbers pm!u . 

Let us demonstrate this fact by an example of fundamen-
tal radiation beams with a rather simple structure 

( , , ) ( / , , ( )),E r z r w z( )
1 0

0
1 1j m j bL=! ! 	 (28)

( , , ) ( / , , ( )),E r z r w z( )
2 0

1
2 2j j bL=!

! 	 (29)

where ( ) / .M1 2!m =!  Formula (28) describes a Gaussian 
beam with uniform elliptical polarisation (Fig. 2a) character-
ised by the degree of ellipticity M, which can vary from –1 
(left-hand circular polarisation) to 1 (right-hand circular 
polarisation). Circularly polarised beam components do not 
contain phase singularities (IF1± = 0). Formulae (29), in turn, 
describe a beam with a zero on-axis intensity, linearly polar-
ised all over the cross section with the electric field strength 
oscillating along the direction specified by the angle j at each 
point with coordinates r, j, z. Its circularly polarised compo-

nents contain such phase singularities that IF2± = ±1 (Fig. 2b). 
Substituting Eqns (28), (29) into Eqn (21), we obtain: 

( ) ( )exp expi iP ( )a " !a m j b m j= +! ! ! ! "7 A

	 .expw
r

w
r

w
r

2 2 1
2

1

2

2
2

2

2

#
b b b

- -f p 	 (30)

Comparing Eqn (30) with Eqns (9), (10), we arrive at the 
result 

.sgnI Ma 2 2

2 2

"
b a
b a

=
+

-
!

! !

! !
U f p 	 (31)

It is seen that in the case of equal sums p p1 2+- -u u  and 
p p1 2++ +u u , the total indices IFa± additionally depend on the 
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Figure 2.  Example of the polarisation distribution in the cross sections 
of two beams of fundamental radiation at frequencies (a) w1 and (b) w2 
in their waist planes, at which the total topological indices of their po-
larisation singularities are not related to the similar indices of the beam 
at a frequency of 2w1 – w2. The shape, relative size and orientation of 
the ellipses in the figures are determined by the values of the electric 
field strength of the beam at the points located in their centre.
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interrelations between the material constants of the medium, 
present in the expressions for a± and b±, as well as on the 
polarisation state of the fundamental Gaussian beam con-
taining no singular points. 

4. Conclusions

We have analysed the previously obtained formulae for the 
transverse distribution of the electric field in the problems of 
third harmonic generation and the generation of the differ-
ence frequency 2w1 – w2 in an isotropic medium in a coaxial 
interaction geometry. The multimode transverse structure of 
the incident beams of fundamental radiation gives rise to 
points of circular polarisation singularity in their cross sec-
tions and, as a consequence, in the cross sections of signal 
beams. Analytical expressions are obtained that relate the 
total topological indices of the singularity points of the left-
hand and right-hand polarisations in the signal and incident 
beams (the values of the total topological indices were consid-
ered unchanged during beam propagation). The found rela-
tions turn out to be much more complicated than the 
‘expected’ results. When the third harmonic is generated, the 
total indices do not triple, and when the frequency 2w1 – w2 is 
generated, the values of the total topological indices of singu-
larities in the signal beam can be affected by the ratios between 
the constants of the medium nonlinear response. It depends 
even on the state of polarisation of the fundamental radiation 
beam, containing no polarisation singularities at all. The 
found laws of transformation of the total topological indices 
allow one to get an idea of the fine details of these nonlinear 
optical processes and may be of interest for creating light 
beams and pulses with an inhomogeneous distribution of the 
electric field containing polarisation singularities of a given 
type by methods of nonlinear optics. The latter are promising 
for use in quantum information optical systems and can be 
used in problems of nonlinear bulk and surface spectroscopy 
of cubic-nonlinear media.
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