Efficient two-stage laser enrichment up to 99% of carbon-13 isotope by IR multiphoton dissociation of Freon molecules

V.B. Laptev, S.V. Pigul'skii

Abstract. A new method for two-stage laser enrichment of carbon-13 (¹³C) by isotope-selective IR multiphoton dissociation of Freon molecules is considered, which makes it possible to achieve a concentration of ¹³C up to 99 % or higher with high productivity. At the first stage, as a result of the selective dissociation of CF₂HCl (Freon-22) molecules, it is expected to obtain a C_2F_4 dissociation product enriched in ¹³C up to 30%-50%. At the second stage, CF₂Br₂ (Freon-12B2) is proposed to be used as a working substance, which is synthesised from enriched C₂F₄, and the enrichment process is carried out by selective deep 'burning-out' of the ¹²C-containing component. Experiments on multiphoton dissociation of Freon-12B2 with an initial ¹³CF₂Br₂ concentration of 30% in a mixture with oxygen by pulsed CO₂ laser radiation are performed. It is shown that reaching a ¹³CF₂Br₂ concentration of no lower than 99% is possible at high values of the elementary separation act parameters: 15%-18% dissociation yield and 40-75selectivity for ¹²CF₂Br₂ molecules.

Keywords: carbon-13, laser enrichment, ¹³C-enriched Freon-12B2, selective 'burning-out' of a ¹²C-containing component.

1. Introduction

Since the 1950s, the world production of the stable carbon-13* isotope has been constantly growing and by 2018 amounted to about 600 kg per year [1, 2]. This is mainly due to the fact that in medical practice pharmacological drugs labelled with the carbon-13 (¹³C) isotope are being actively introduced and widely applied, which makes them indispensable for diagnosing various diseases by methods of breath tests and magnetic resonance [3]. Carbon-13 is also used as a starting material for positron emission tomography [2]. The ever-growing demand for the ¹³C isotope requires the development of its production, including on new principles. The method for isotope separation based on isotope-selective multiphoton dissociation (MPD) of molecules by IR laser radiation has been brought for carbon isotopes to industrial implementation and has proved its competitiveness compared to traditional methods [1, 4, 5]. In particular, the Uglerod complex (ZAO Gaz-Oil, Kaliningrad) in the early 2000s produced up to 30 kg of

Received 29 November 2021 *Kvantovaya Elektronika* **52** (4) 371–375 (2022) Translated by M.A. Monastyrskiy carbon-13 per year, which at that time accounted for about a third of the world production [2].

At the same time, practice has shown that laser enrichment of ¹³C in one stage is economically advantageous only up to a concentration of 30%-50% [5]. Therefore, there is a need to use the second stage of enrichment, at which the ¹³C concentration of 99% that is necessary for medical purposes is reached. At the second stage, both traditional enrichment methods (low-temperature distillation, gas centrifuges, etc.) and the laser method can be used. The use of the laser method for the enrichment of ${}^{13}C$ from 30%-50% to 99%, in our opinion, is more appropriate for the following reasons. Firstly, traditional enrichment methods are characterised by high capital and energy costs, as well as a long period for the separation cascade to reach a stationary operation regime. Secondly, the estimated cost of the product in the laser method, according to preliminary estimates, should be noticeably lower than in the first stage of enrichment from the natural carbon-13 content of 1.1% to ~30%, which is associated with significantly lower (about 30 times) amounts of the working substance. In addition, the final enriched product $(CO_2 \text{ or } CO)$ produced by laser technology will have a natural concentration of oxygen isotopes. The catalogue price of such a product is much higher. For classical methods, this ratio is violated. Thus, the task of developing an efficient laser technology for enriching carbon-13 to 99% at the second stage is very urgent.

2. Review of previous works

Since the 1980s, many researchers around the world have been studying the possibility of obtaining highly enriched carbon-13. Various options for solving this problem were considered. Attempts were made to achieve high concentrations of ¹³C already at the first stage. The principal possibility of obtaining ¹³C with a concentration of up to 96%–98% in one stage was demonstrated in laboratory experiments on the isotopically selective MPD of Freon-22 (CF₂HCl) [6, 7]. However, in these studies, the experimental conditions were chosen in such a way as to ensure the maximum selectivity of the separation process. The dissociation efficiency and, consequently, the process productivity were extremely low. It became clear that high concentrations of ¹³C could only be achieved with high productivity by using at least two laser enrichment stages.

In works [8-21] dedicated to the development of various options for implementing the second stage of laser enrichment, three main directions are considered. The first direction is separate enrichment processes at the first and second stages with an intermediate cycle of isolation of the product enriched

^{*}The natural abundance of heavy carbon-13 isotope is 1.1%.

V.B. Laptev, S.V. Pigu'lskii Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, 108840 Moscow, Troitsk, Russia; e-mail: laptev@isan.troitsk.ru

in ¹³C and its chemical conversion into a compound suitable for use at the second stage [8–10]. The second way is to combine the enrichment process with simultaneous chemical synthesis inside the laser separation reactor of the working substance for the second stage [8, 11–13]. To do this, an additional chemical compound (acceptor) is added to the working substance of the first stage, in reactions with which the radicals formed during IR MPD produce the product enriched in ¹³C, which is necessary for the second stage. The third method makes it possible to completely combine the first and second

enrichment stages and the chemical conversion cycle in a single reactor. This is achieved by adding the acceptor to the first-stage working substance, upon interaction with which a substance is formed, which, along with the first one, isotope-selectively dissociates under the action of laser radiation of the same frequency [14-21].

The first way of organising a two-stage separation process was studied in [9, 10]. Freon-22 (CF₂HCl) with an increased concentration of ¹³CF₂HCl molecules (32.6% [10]) was synthesised from the first-stage product tetrafluoroethylene (C_2F_4) enriched in ¹³C. In this case, in work [10], in contrast to work [9], a reactor with enriched Freon-22 was located inside the CO₂ laser resonator in the same way as in an industrial plant [4, 5]. It was found that an increase in the initial concentration of ¹³CF₂HCl to 32.6% and a corresponding increase in the resonator losses do not lead to the generation failure, and the entire system operates stably. As a result of the experiments, the final ¹³C concentration of 99.55% \pm 0.5% was reached in the C_2F_4 dissociation product; however, the degree of depletion and dissociation yield of the desirable ¹³CF₂HCl component were low ($\sim 5\%$ and about 0.04%, respectively). Such low parameters of the enrichment process indicate the inefficiency of this scheme.

The second method of the process organisation, combining at the first stage the enrichment and chemical synthesis of the working substance for the second stage, was implemented by adding bromine radicals as an acceptor to the working compounds [8, 11-13]. From the standpoint of the process technology, the presence of bromine in the laser separation reactor is undesirable due to its high chemical activity and adsorption capacity.

The third way to organise a two-stage process with an intracavity reactor was studied in our work [21]. The addition of hydrogen iodide to Freon-22 as an acceptor led to the formation of an intermediate product, CF₂HI, which dissociated selectively with respect to ¹³C during irradiation at the same laser radiation frequency. This made it possible to achieve a ¹³C concentration of 98% ± 1.5% in the final CF₂H₂ product. However, it turned out that this scheme, in addition to the difficulties associated with the use of chemically aggressive hydrogen iodide and partial loss of ¹³C in the intermediate CF₂HI product, has one more significant drawback. With an intracavity placement of the reactor, the fluence of laser radiation, and, consequently, the efficiency of multiphoton dissociation of CF₂HCl significantly decreased with accumulation of enriched products in the reactor.

Thus, almost all the studied schemes for the implementation of the second stage of laser enrichment are based on the selective dissociation of the ¹³C-containing component of compounds pre-enriched with ¹³C. It turned out that in this way it is difficult to realise a high productivity of the enrichment process, since the required final concentration of ¹³C (99%) was either not achieved or had a low process productivity and a low degree of depletion of the ¹³C-containing component [10]. Obtaining the required degree of the desirable isotope depletion and further use of the ¹³C-enriched residual gas are the main problems of the second laser stage scheme, in which the selective dissociation of the ¹³C-containing component is carried out.

The method of carbon-13 enrichment based on the selective 'burning-out' of an undesirable ¹²C-containing component, which was first proposed in work [22] and developed in works [23-25], was also studied. A theoretical analysis of the enrichment method based on the 'burning out' of an undesirable isotope is given in [26] when choosing the optimal scheme for organising the separation process. In this selective multiphoton dissociation method, the component with ¹²C is converted into products, and the residual gas is enriched in the desirable ¹³C-containing component. In experiments on MPD of CF₃I [22, 23, 25], CF₃Br [24], and CF₂HCl [25] molecules with a natural ¹³C content of 1.1%, the fundamental possibility of implementing such a scheme was demonstrated. In work [22], after irradiation, a concentration of ¹³CF₃I molecules equal to 86% was reached in the residual gas. In work [23], the concentration of ¹³CF₂I molecules was 70%, while the macroscopic amount of the isotopic mixture of CF₂I molecules amounted to 2 g. Similar experiments were conducted with CF₃Br [24] and CF₂HCl [25] molecules, also with the initial ¹³C content of 1.1%. In work [24], the achieved concentration of ${}^{13}CF_3Br$ was 90%.

At the same time, the method of selective 'burning-out' of an undesirable ¹²C-containing component for compounds with a natural ¹³C content has an extremely low efficiency. Firstly, the maximum concentration of ¹³C reached in the experiments did not exceed 90%. Secondly, to achieve a ¹³C concentration of 99%, 99.99% of the substance must be processed, which dramatically increases energy consumption. Thirdly, due to the huge amount of dissociation products, they must be continuously removed from the reactor, since they can affect the dissociation selectivity. This is extremely inconvenient from the viewpoint of process technology.

3. Proposed method for implementing a two-stage ¹³C enrichment process

Based on the foregoing, we can conclude that the problem of efficient production of carbon-13 with 99% enrichment by using only a laser method has essentially remained unsolved. We propose a new approach, which consists in using the method of deep selective 'burning-out' of the ¹²C-containing component at the second stage of enrichment, while Freon-12B2 (CF₂Br₂), pre-enriched by ¹³C up to 30%–50%, is supposed to be used as the working substance of the laser process [27].

The use of CF_2Br_2 is explained by the relatively simple chemical synthesis of this compound from tetrafluoroethylene, which is a product of the first-stage enrichment [5, 28]. This is the first advantage of this approach. In addition, the results of preliminary experiments on the IR MPD of Freon-12B2 with a natural ¹³C content of 1.1%, which we have performed previsouly [29], show that the spectral properties of CF_2Br_2 allow us to achieve high values of the elementary separation act parameters (yield and dissociation selectivity with respect to the ^{12C}-containing component) at a low fluence of laser radiation.

Another advantage is that a much smaller amount of substance (50%-70% of the main ¹²C-containing component) will be processed when using pre-enriched Freon-12B2 in order to achieve the required ¹³C-concentration of 99% at the second stage. This should significantly reduce the amount of dissociation products and energy consumption.

However, the principal advantage of the method of deep selective 'burning-out' of the ¹²C-containing component for ¹³C enrichment is the possibility of achieving any final ¹³C concentration in the residual gas, including 99% or higher.

Thus, the purpose of these experiments was to study the process of ¹³C enrichment with deep 'burning-out' of the ¹²C-containing component in Freon-12B2 with enrichment in ¹³C 30% under the action of pulsed CO₂ laser radiation. During the experiment, the main parameters of the separation elementary act (yield and selectivity of dissociation) were measured and optimised depending on the irradiation conditions. It was shown that at high values of the separation act parameters, the concentration of ¹³CF₂Br₂ molecules of at least 99% in the residual gas is reliably achieved.

4. Experiment

The amount of Freon-12B2 enriched with ¹³C to 30%, required for experiments, was synthesised by laser conversion of enriched CF₂HCl (¹³C concentration of 30%) in a bromine medium. The content of the main substance in the synthesised CF₂Br₂ product was about 96%. IR spectra of enriched Freon-12B2 were obtained and isotopic shifts relative to ¹³C were measured in the absorption bands of vibrational modes $v_1 = 1090$ cm⁻¹, $v_6 = 1153$ cm⁻¹, and $v_8 = 831$ cm⁻¹ [30].

The ¹²C-selective multiphoton dissociation of CF_2Br_2 was performed by tuning the CO_2 laser radiation frequency to the long-wavelength wing of the absorption band $v_1 = 1090$ cm⁻¹ corresponding to the symmetric vibration of the ¹²CF₂ group. In the experiments, the kinetics of changes in the concentration of each isotopic component was measured as a function of the number of laser pulses under different irradiation conditions (radiation frequency, CF_2Br_2 pressure, and O_2 acceptor gas pressure). The concentration of each component was used to determine the yield and dissociation selectivity, as well as their change in the enrichment process. Selective dissociation of CF_2Br_2 in an oxygen environment resulted in the conversion of the ¹²C-containing component predominantly into the COF₂ dissociation product, while the remaining CF_2Br_2 was enriched in ¹³C to a concentration of 99% or higher.

A Specord-M82 computerised dual-beam IR spectrophotometer was used to determine the concentration of each component at a high concentration of ${}^{12}CF_2Br_2$ (from 70% to about 5%). The concentrations were measured from the intensity of the absorption bands of ${}^{12}C$ - and ${}^{13}C$ -containing components of the $v_8 = 831 \text{ cm}^{-1}$ (${}^{12}CF_2Br_2$) mode, since the bands of isotopic components are well resolved only for this mode. When the content of ${}^{12}CF_2Br_2$ was reduced below 5%, a highly sensitive Clarus 500 chromatograph/mass spectrometer was used. The ${}^{12}C$ and ${}^{13}C$ concentrations were measured by mass peaks with a mass-to-charge ratio of m/e = 129, 130 from ${}^{12}CF_2{}^{79}Br^+$ and ${}^{13}CF_2{}^{79}Br^+$ fragment ions.

The experimental procedure was as follows. For irradiation, we used a stainless steel cell with KBr windows 11.2 cm long, pre-pumped by a forevacuum pump through a nitrogen trap to a residual pressure of 7.5×10^{-3} Torr (1 Pa). The cell was filled with a mixture of enriched CF₂Br₂ with a 30% concentration of ¹³C and oxygen. Next, the gas mixture was sequentially irradiated with portions of *N* pulses. After each series of laser pulses, the MPD yields and selectivity were determined. The selectivity of dissociation with respect to the ¹²C component was determined as the yield ratio $\alpha(12/13) = \beta_{12}/\beta_{13}$. Dissociation yields β_i (i = 12, 13) were calculated from the partial pressure of each component before ($p_{i,0}$) and after (p_i) irradiation with *N* laser pulses. Here $p_{i,0}$ was taken as the current partial pressure of the components before the onset of a new series of laser pulses. To calculate β_i , the following formula was used [31]:

$$\beta_i = \Gamma^{-1} [1 - (p_i / p_{i,0})^{1/N}], \tag{1}$$

where Γ is the ratio of the irradiated volume to the cell volume.

5. Results and discussion

The results of ¹²C-selective multiphoton dissociation of CF_2Br_2 under sequential irradiation of a sample of the $CF_2Br_2 + O_2$ gas mixture are shown in Fig. 1, which demonstrates the IR spectra of the absorption bands of ¹²C- and ¹³C-containing v₈-mode components. It can be seen that the ¹²CF₂Br₂ band decreases with irradiation until it almost completely disappears, while the ¹³CF₂Br₂ band changes insignificantly. When calculating the concentration of ¹³CF₂Br₂, we took into account the contribution of the R-branch of the v₆ = 774 cm⁻¹ band [32] from the ¹²COF₂ dissociation product accumulated in the mixture during irradiation.

Figure 1. (Colour online) IR spectra of absorption bands of v_8 modes of ${}^{12}\text{CF}_2\text{Br}_2$ and ${}^{13}\text{CF}_2\text{Br}_2$ under sequential laser irradiation of the CF₂Br₂ + O₂ mixture at a frequency of 1084.6 cm⁻¹ [CO₂ laser generation line 9R(30)] and a fluence of 2.6 J cm⁻². Initial pressures are: CF₂B₂, 1 Torr; and O₂, 30 Torr. The green line corresponds to the R-branch of the v_6 band for ${}^{12}\text{COF}_2$ at the end of irradiation.

The kinetics of reducing the concentration of the 'burntout' ${}^{12}CF_2Br_2$ component with increasing number of laser pulses is shown in Fig. 2 for two laser radiation frequencies. Note that in both cases, with an approximately equal number of pulses (300–350), a ${}^{12}CF_2Br_2$ concentration of less than 1% and, accordingly, a ${}^{13}CF_2Br_2$ concentration of more than 99% are reliably achieved. This is not surprising, since the MPD yields of the ${}^{12}CF_2Br_2$ molecules at both frequencies, as shown below, are approximately equal.

The dependences of the dissociation yields β_{12} and β_{13} of the ${}^{12}\text{CF}_2\text{Br}_2$ and ${}^{13}\text{CF}_2\text{Br}_2$ molecules and the selectivity $\alpha(12/13) = \beta_{12}/\beta_{13}$ on the number of laser pulses under succession.

Figure 2. (Colour online) Dependences of the concentration of ${}^{12}\text{CF}_2\text{Br}_2$ on the number of laser pulses during sequential irradiation of the CF₂Br₂ + O₂ mixture with laser radiation at a frequency of (a) 1078.6 and (b) 1084.6 cm⁻¹ [CO₂ laser generation lines 9R(20) and 9R(30), respectively] and a fluence of 2.6 J cm⁻². Initial pressures are: CF₂Br₂, 1 Torr; and O₂, 30 Torr.

sive irradiation of the $CF_2Br_2 + O_2$ mixture are shown in Fig. 3. Three main points that are characteristic of these dependences deserve discussion. First, let us pay attention to the high (15%–18%) dissociation yields β_{12} with respect to the 'burnt-out' ¹²CF₂Br₂ component, which are achieved at a very moderate laser radiation fluence of 2.6 J cm⁻². In the long run, this makes it possible to implement high productivity of the enrichment process. In addition, the value of β_{12} virtually does not depend on the current concentration of 12 CF₂Br₂. Second, an increase in the laser radiation frequency leads to a significant increase in the selectivity of dissociation: from 13–15 at 1078.6 cm⁻¹ to 40–75 at 1084.6 cm⁻¹. As a result, the losses of the desirable ¹³CF₂Br₂ component significantly decrease (from 40%-50% to ~15%), while the enrichment process productivity proportionally increases. Third, at both laser radiation frequencies, there is a part of selectivity growth at the onset of irradiation. It is within this initial part that the ¹²CF₂Br₂ and ¹³CF₂Br₂ concentrations are equalised. This can be seen by comparing the kinetic dependences of the 12 CF₂Br₂ concentration and selectivity shown in Figs 2 and 3. Thus, a significant reserve for reducing the losses of a component with the desirable isotope ¹³CF₂Br₂ consists in using enriched CF_2Br_2 with a ¹³C concentration of 50% and higher.

The increase in the MPD selectivity $\alpha(12/13) = \beta_{12}/\beta_{13}$ at the initial stage of CF₂Br₂ irradiation is, in our opinion, due to the influence of inter-isotope vibrational–vibrational (VV) exchange [31], which leads to the transfer of vibrational energy from selectively excited ¹²CF₂B₂ molecules to ¹³CF₂Br₂ molecules during the laser pulse action. When the concentration of ¹²CF₂Br₂ molecules is still high (70%), the portion of vibrational energy transferred to ¹³CF₂Br₂ molecules is also

Figure 3. (Colour online) Dependences of dissociation yields (1) β_{12} and (2) β_{13} and selectivity $\alpha(12/13)$ (3) on the number of laser pulses during sequential irradiation of the CF₂Br₂ + O₂ mixture with laser radiation at a frequency of (a) 1078.6 and (b) 1084.6 cm⁻¹ [CO₂ laser generation lines 9R(20) and 9R(30), respectively] and a fluence of 2.6 J cm⁻². Initial pressures are: CF₂Br₂, 1 Torr; and O₂, 30 Torr.

large, which contributes to an increase in the dissociation yield of ${}^{13}\text{CF}_2\text{Br}_2$. With an increase in the number of laser pulses, the concentrations of ${}^{12}\text{CF}_2\text{Br}_2$ and ${}^{13}\text{CF}_2\text{Br}_2$ align, and the proportion of vibrational energy transferred to ${}^{13}\text{CF}_2\text{Br}_2$ molecules decreases, which manifests itself in a decrease in the dissociation yield of ${}^{13}\text{CF}_2\text{Br}_2$ and a corresponding increase in selectivity (see Fig. 3).

The assumption about the decisive role of the VV exchange in the growth of dissociation selectivity at the initial stage of the 'burning-out' of ${}^{12}\text{CF}_2\text{Br}_2$ molecules is confirmed by the kinetic dependences of the dissociation yields β_{12} and β_{13} and selectivity $\alpha(12/13)$ with an increase in the pressure of CF_2Br_2 to 4 Torr (Fig. 4). It can be seen that with an increase in pressure from 1 to 4 Torr, the dissociation selectivity $\alpha(12/13)$ sharply decreases at the beginning of irradiation from 13–15 to 3 (compare Figs 3b and 4).

One more useful feature of the proposed method for obtaining highly enriched (99% and higher) carbon-13 should be noted. Due to the finite MPD selectivity of ${}^{12}\text{CF}_2\text{Br}_2$ molecules, the COF₂ dissociation product is slightly enriched with ${}^{13}\text{C}$. For example, at a CO₂ laser radiation frequency of 1084.6 cm⁻¹, at the end of irradiation, the concentration of ${}^{13}\text{COF}_2$ reaches ~5%. The COF₂ product readily hydrolyses to form CO₂ enriched in ${}^{13}\text{C}$, which can then be used as a working substance for traditional separation methods.

6. Conclusions

A new method for arranging a two-stage process of carbon isotope separation is considered, which allows us to obtain carbon-13 with a concentration of at least 99% with high pro-

Figure 4. (Colour online) Dependences of (1) β_{12} and (2) β_{13} dissociation yields and the selectivity $\alpha(12/13)$ (3) on the number of laser pulses in sequential irradiation of a CF₂Br₂ + O₂ mixture by laser radiation at a frequency of 1084.6 cm⁻¹ [CO₂ laser generation line 9R(30)] and a fluence of 2.6 J cm⁻². Initial pressures are: CF₂Br₂, 4 Torr; and O₂, 30 Torr.

ductivity. For this purpose, we propose to use Freon-12B2 (CF_2Br_2) with 30% and higher enrichment in ¹³C as a working substance for the second enrichment stage, which is quite simply synthesised from enriched ¹³C of the first stage, and also use, for enrichment in ¹³C, the method of selective deep 'burning-out' of the ¹²C-containing component.

Experiments have been carried out on multiphoton dissociation of Freon-12B2 with a 30% initial concentration of ${}^{13}\text{CF}_2\text{Br}_2$ molecules in a mixture with oxygen by pulsed radiation from CO₂ laser. The possibility has been shown of reaching a 99% and higher concentration of ${}^{13}\text{CF}_2\text{Br}_2$. The main separation elementary act parameters – the MPD yield and selectivity with respect to ${}^{12}\text{C}$ -containing component – have been measured in the process of its 'burning-out'. High yield values for ${}^{12}\text{CF}_2\text{Br}_2$ component ($\beta_{12} = 15\% - 18\%$) and selectivity [$\alpha(12/13) = 40 - 75$] have been obtained at a moderate laser radiation fluence of 2.6 J cm⁻². The obtained results allow us to hope for the further development of an effective, purely laser process for producing carbon-13 with the required ${}^{13}\text{C}$ concentration of at least 99%.

References

- Baranov V.Yu. (Ed.) *Izotopy: svoistva, poluchenie, primenenie* (Isotopes: Properties, Production, Application) (Moscow: Fizmatlit, 2005) Vol. 1.
- 2. Khoroshilov A.V. J. Phys.: Conf. Ser., 1099, 012002 (2018).
- El'man A.R., Korneeva G.A., Noskov Yu.G. *Ros. Khim. Zh.*, LVII, 3 (2013).
- Baranov V.Yu., Dyad'kin A.P., Malyuta D.D., Kuzmenko V.A., Pigilsky S.V., Mezhevov V.S., Letokhov V.S., Laptev V.B., Ryabov E.A., Yarovoy I.V., Zarin V.D., Podoryashy A.S. *Proc. SPIE*, 4165, 314 (2000).
- Pigul'skii S.V. Doct. Diss. (Moscow: Scientific and Technological Centre for Unique Instrumentation of the Russian Academy of Sciences, 2009).
- Gauthier M., Cureton C.G., Hackett P.A., Willis C. *Appl. Phys.* B, 28, 43 (1982).
- Evseev A.V., Laptev V.B., Puretskii A.A., Ryabov E.A., Furzikov N.P. Sov. J. Quantum Electron., 18 (3), 385 (1988) [Kvantovaya Elektron., 15, 606 (1988)].

375

- Abdushelishvili G.I., Avatkov O.N., Bagratashvili V.N., Baranov V.Yu., Bakhtadze A.B., Velikhov E.P., Vetsko V.M., Gverdtsiteli I.G., Dolzhikov V.S., Esadze G.G., Kazakov S.A., Kolomiiski Yu.R., Letokhov V.S., Pigul'skii S.V., Pismennyi V.D., Ryabov E.A., Tkeshelashvili G.I. Sov. J. Quantum Electron., 12 (4), 459 (1982) [Kvantovaya Elektron., 9, 743 (1982)].
- Gauthier M., Outhouse A., Ishikawa Y., Kutschke K.O., Hackett P.A. *Appl. Phys. B*, **35** (3), 173 (1984).
- Apatin V.M., Laptev V.B., Ryabov E.A., Petin A.N. *Khim. Vys. Energ.*, **37** (2), 133 (2003).
- Arai S., Watanabe T., Ishikawa Y., Oyama T., Hayashi O., Ishii T. Chem. Phys. Lett., 112 (3), 224 (1984).
- Arai S., Sugita K., Ma P., Ishikawa Y., Kaetsu H., Isomura S. Chem. Phys. Lett., 151, 516 (1988).
- Arai S., Sugita K., Ma P., Ishikawa Y., Kaetsu H., Isomura S. *Appl. Phys. B*, 48, 427 (1989).
- Velichko A.M., Nadeikin A.A., Nikitin A.I., Pimenova N.V., Talroze V.L. *Khim. Vys. Energ.*, 21 (3), 251 (1987).
- 15. Ma P., Sugita K., Arai S. Chem. Phys. Lett., 137 (6), 590 (1987).
- 16. Ma P., Sugita K., Arai S. Appl. Phys. B, 49, 503 (1989).
- 17. Ma P., Sugita K., Arai S. Appl. Phys. B, 51, 103 (1990).
- 18. Ma P., Sugita K., Arai S. Appl. Phys. B, 50, 385 (1990).
- Baranov V.Yu., Dyad'kin A.P., Kuz'menko V.A. *Khim. Vys. Energ.*, 25, 181 (1991).
- 20. Laptev V.B., Ryabov E.A. Khim. Vys. Energ., 33, 406 (1999).
- Dyad'kin A.P., Kuz'menko V.A., Laptev V.B., Pigul'skii S.V., Ryabov E.A. *Khim. Vys. Energ.*, 34, 371 (2000).
- 22. Bittenson S., Houston P.L. J. Chem. Phys., 67, 4819 (1977).
- 23. Fuss W., Schmid W.E. Ber. Bunsenges Phys. Chem., 83, 1148 (1979).
- Avatkov O.N., Vetsko V.M., Esadze G.G., Kaminskii A.V., Tkeshelashvili G.I. Sov. J. Quantum Electron., 8, 1119 (1981) [Kvantovaya Elektron., 11, 668 (1981)].
- Kojima H., Fukumi T., Nakajima S., Maruyama Y., Kosasa K. Chem. Phys. Lett., 95, 614 (1983).
- Velikhov E.P., Letokhov V.S., Makarov A.A., Ryabov E.A. Sov. J. Quantum Electron., 6, 317 (1979) [Kvantovaya Elektron., 9 (2), 179 (1979)].
- 27. Laptev V.B., Pigul'skii S.V. RF Patent No. 2712592 (2020).
- Baranov V.Yu., Dyad'kin A.P., Kuz'menko V.A., Pigul'skii S.V. Proc. 5th All-Russian (Int.) Sci. Conf. 'Physico-Chemical Processes In the Selection of Atoms and Molecules' (Zvenigorod, 2000) p. 77.
- Laptev V.B. Proc. 10th Int. Sci. Conf. 'Physico-Chemical Processes In the Selection of Atoms and Molecules' (Zvenigorod, 2005) p. 94.
- 30. Laptev V.B., Pigul'skii S.V. Khim. Vys. Energ., 52, 215 (2018).
- Velikhov E.P., Baranov V.Yu., Letokhov V.S., Ryabov E.A., Starostin A.N. *Impul'snye CO₂-lazery i ikh primenenie dlya razdeleniya izotopov* (Pulsed CO₂ Lasers and Their Application for Isotope Separation) (Moscow: Nauka, 1983).
- 32. Shimanouchi T. J. Phys. Chem. Ref. Data, 6, 993 (1972).