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Abstract.  A model of the interference of fields from backscattering 
point sources in a ring optical resonator is presented. Examples of 
calculations of complex coupling coefficients in ring resonators of 
laser gyroscopes are given. Comparison of the calculation results 
with the results of model experiments demonstrates good agree-
ment and makes it possible to determine dissipative and conserva-
tive backscattering components of individual resonator mirrors. 
The possibilities of reducing the dissipative and conservative back-
scattering components in the process of ring resonator alignment 
are discussed.

Keywords: laser gyroscope, ring resonator, light backscattering, 
complex coupling coefficients, backscattering point sources, dissi-
pative and conservative backscattering sources.

1. Introduction

Backscattering caused by inhomogeneities of mirror coatings 
is one of the main sources of errors in a laser gyroscope (LG) 
based on a ring He – Ne laser with a wavelength l = 632.8 nm. 
Of the three main parameters that characterise the LG accu-
racy – zero shift stability, angle random walk, and scale factor 
nonlinearity – the last two parameters are associated with 
backscattering. It is no coincidence that the improvement of 
technologies for polishing substrates and methods for apply-
ing multilayer dielectric mirrors has been a key factor that 
allows modern LGs to solve many precision problems of nav-
igation, measuring angular displacements, geodesy, and geo-
physics.

In ring gas laser theory of [1 – 5], the effect of backscatter-
ing on the amplitude – frequency characteristics of an LG is 
described using two linear parameters, the so-called complex 
coupling coefficients (CCCs), which characterise parts of the 
field of eigenoscillations of a ring resonator that fall into a 
counterpropagating wave as a result of backscattering:

rcw, ccw = rcw, ccw exp(i jcw, ccw).	 (1)

Here, the subscripts cw and ccw denote the parameters of the 
waves propagating along the ring resonator (RR) in the 

clockwise and counterclockwise directions, respectively; rcw 
and rccw are the CCC moduli; and jcw and jccw are phase 
shifts resulting from backscattering.

The total CCC is the result of the scalar summation of the 
partial components of all backscattering sources located in 
the working zones of the RR mirrors. This is true under the 
assumption that the selective diaphragm does not make a sig-
nificant contribution to the CCC value.

If each of the resonator mirrors is represented as separate 
backscattering sources characterised by their own partial 
CCCs, then the total complex coupling coefficient is written 
in the form:

[ ( 2 )],exp ir klr ,cw ccw n n n
n

! j= +/ 	 (2)

where n is the serial number of the mirror; rn is the modulus of 
the partial CCC; jn is the phase shift; ln is the projection of the 
radius vector of the point source onto the optical axis of the 
RR (for brevity, we will call it the longitudinal coordinate); 
and k = 2p/l is the wavenumber. The presence of factor 2 in 
front of the wavenumber in formula (2) is due to the double 
phase incursion during the formation of the backscattering 
wave. The ‘+’ sign refers to the wave in a clockwise direction.

The question immediately arises: What geometric dimen-
sion is meant by the longitudinal coordinates ln? In the work-
ing area of the mirror, there are many defects randomly ‘scat-
tered’ over its surface. How can one describe their position on 
the optical RR axis in the form of a longitudinal coordinate?

In the case of a point defect with a size much smaller than 
the wavelength, this problem does not seem to be difficult. 
The coordinate of a point backscattering source in the scalar 
sum (2) is the longitudinal coordinate of its position on the 
optical axis. When describing arrays of backscatteiring 
sources, the answer to the posed question is not so obvious. 
Moreover, under the conditions of real operation of the LG, 
the position of the optical axis of the ring resonator does not 
remain unchanged. Changes in the ambient temperature and 
atmospheric pressure lead to deformation of the optical con-
tour and a shift of the laser mode along the surfaces of the RR 
mirrors.

It may seem strange, but the reason for writing this paper 
was an error in determining the longitudinal coordinate in 
relation (2), which we found in a paper published more than 
30 years ago [6]. This could not have been reported. In under-
standing the physical nature of backscattering effects in a ring 
gas laser, there are still many ‘blank spots’ that are waiting for 
their researchers. However, references to work [6] continue to 
appear regularly in papers devoted to the LG problems. To 
date, the total citation list has amounted to 37 papers. This 
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means that the error has gone unnoticed for developers and 
researchers of laser gyroscopes.

It should also be noted that when interpreting the results 
of measurements of the CCC moduli and the phase shift due 
to backscattering, we use a fundamentally different model of 
the CCC formation. The results of our model experiments on 
measuring CCCs in a ring resonator showed the correctness 
of using such a model. Before presenting the main results of 
our work, let us show what the error of the author of [6] con-
sists of.

2. Model of point backscattering sources 

The cause of the error in [6] lies in the fact that the longitudi-
nal coordinate ln in relation (2) is the length of the arm of the 
optical contour, at the vertices of which the RR mirrors are 
located. Figure 1a reproduces the optical scheme of a three-
mirror RR used by the author of [6]. The resonator is formed 
by two flat mirrors and a spherical one. The spherical mirror 
is equipped with a piezoelectric transducer (PZT), which 
makes it possible to stabilise the resonator perimeter.

It is easy to verify that, under uniform thermal deforma-
tions, the shape of the resonator optical contour remains in 
the form of a regular triangle. The expansion of the RR hous-
ing is compensated by the shift of the PZT, which allows the 
lengths of the arms of the optical contour to remain 
unchanged. Hence, the author of [6] comes to the conclusion 
that when the PZT is installed on a spherical mirror, the mod-
ulus of the total CCC remains unchanged. The fallacy of this 
statement can be easily proven.

To do this, we concretise (and at the same time simplify) 
the model of backscattering sources. Let us assume that on 
the surface of each of the RR mirrors there is only one point 
source (Fig. 1b). In the initial position, these sources are 
located along the vertices of the optical contour. With the 
expansion of the RR housing, the distance between the point 
sources of flat mirrors increases, while the distances between 
the point sources of spherical and flat mirrors, on the con-
trary, decrease. The problem of calculating the modulus of 
the total CCC is reduced to calculating the distances between 
three point sources for various resonator deformations.

Let us start with the deformations that are associated with 
the PZT movement. When the PZT of a spherical mirror 

moves along the normal to a distance h, the RR perimeter 
changes by the value

.L h 3D = 	 (3)

In this case, the distance between points 2 and 3 does not 
change, while the distances between points 1 and 2 and 1 and 
3 decrease (for definiteness, we assume that the perimeter 
decreases when the PZT moves). These distances are defined as

,l l h 2
3

12
( )
12
0= - 	 (4)

,l l h 2
3( )

13 13
0= - 	 (5)

where the superscript corresponds to the initial position of the 
mirrors.

Let us find out what will happen under uniform thermal 
deformations. Suppose we have increased the RR perimeter 
by DL. If the PZT is not used, then the distances between 
point sources will increase by DL/3. The switching on of a sta-
bilisation system compensates for this increase in perimeter. 
As a result, we obtain the relations for the distances between 
point sources:

,l l L h3 2
3( )

12 12
0 D

= + - 	 (6)

,l l L h3 2
3( )

13 13
0 D

= + - 	 (7)

.l l L
3

( )
23 23

0 D
= + 	 (8)

Let us now take into account the relationship between 
h and DL [see relation (3)]. This means that the change in the 
RR perimeter caused by the deformation is compensated by 
the movement of the PZT. The relations for the distances 
l12 and l13 take the form

,l l L
6

( )
12 12

0 D
= - 	 (9)

.l l L
6

( )
13 13

0 D
= - 	 (10)

Taking into account (6) – (10), we write relation (1) for the 
total CCC. In this case, we choose a spherical mirror as the 
reference point, and the rotation angles on the complex plane 
are measured from the partial CCC of this mirror. The total 
CCC can be written in the form:

exp ir r k l Lr 2 6
( )

1 2 12
0 D

= + -aa kk

	 .exp ir k l l L2 6
( ) ( )

3 12
0

23
0 D

+ + +aa kk 	 (11)
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Figure 1.  Formation of the total CCC in a three-mirror RR under uni-
form thermal deformations: (a) shift of the optical contour; (b) change 
in distances between point backscattering sources.
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The distances l ( )
12
0  and l ( )

23
0  between the point sources deter-

mine the rotation angles of the partial CCCs of the mirrors on 
the complex plane (see Fig. 1b). The vector r1 remains immo-
bile, since the initial position was chosen in this way. The vec-
tors r2 and r3 rotate in different directions.

An example of the behaviour of the modulus of the total 
CCC under uniform thermal deformations is shown in Fig. 2. 
In the calculation, we used relation (11) written in the form:

exp ir r k a Lr 2 61 2 2
D

= + -aa kk	

	 .exp ir k a L2 63 3
D

+ +aa kk 	 (12)

As can be seen, we have obtained a periodic two-hump depen-
dence r(DL) with a period of 3l. With such a change in the 
perimeter, the distances between neighbouring point sources 
change by 1l, which corresponds to a 360° rotation of the 
vectors of partial CCSs on the complex plane.

Let us give one more example illustrating the incorrect-
ness of determining the longitudinal distance between the 
backscattering sources in the form of arms of the optical con-
tour of the RR. Let us assume that a flat mirror is shifted 
along the contact surface of the RR monoblock housing. In 
this case, the optical contour of the resonator does not change. 
Let us see what happens with the CCC modulus when the 
mirror moves over a distance comparable to the wavelength.

Note that in the case of the mirror moving in the direction 
perpendicular to the plane of the optical contour, the longitu-
dinal distances between the point sources of the RR mirrors 
practically do not change. For example, for a ring resonator 
arm length (distance between adjacent mirrors) l = 70 mm, a 
shift from the centre of a point defect by d = 10 mm leads to an 
increase in the distance Dln by 1/1400 mm (Dln » d2/2l), i.e., the 
modulus of the total CCC remains virtually unchanged.

The situation dramatically changes when the mirror is 
moved in the plane of the optical contour (Fig. 3). In this case, 
when the mirror moves a distance d, the relations for the dis-
tances between point sources take the form

,l l 2
( )

12 12
0 d

= + 	 (13)

.l l 2
( )

13 13
0 d

= - 	 (14)

As follows from (13) and (14), when mirror 1 moves 
along  the edge of the monoblock housing, the distances 
l12  and l13  change antiphase: one of them increases and the 
other decreases. The value of the total CCC is described by 
the relation:

(2 )exp ir r klr ( )
2 3 23

0= +

	 2 .exp ir k l l 2
( ) ( )

1 12
0

13
0 d

+ + -a k< F 	 (15)

As applied to the CCC vectors on the complex plane, this 
means that the vector r1 rotates about the sum vector r23. For  
d l= , the change in the distances l12 and l13 is /2l , i.e., the 
vector r1 rotates through 360°. The value of d  is the period of 
dependence of the total CCCF modulus on the mirror dis-
placement.

Figure 3 shows the corresponding dependence of r(d) for 
the total CCCS modulus. Based on its maximum (rmax) and 
minimum (rmin) values, we can express the ratio for the partial 
contributions r1 and r23 in the form:

.r
r r

21,23
max min!

= 	 (16)
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Figure 2.  Dependence of the total CCC modulus on the relative change 
in the perimeter under uniform thermal deformations of a three-mirror 
RR. Initial data: r1 = 0.5 ppm, r2 = 1 ppm, a2 = 0.3, r3 = 1 ppm, and 
a3 =  0.1.
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Figure 3.  (a) Geometry of mirror movement along the contact surface 
of the RR housing, which allows controlling the phase of the mirror’s 
partial CCC; (b) formation of the total CCC on the complex plane; and 
(c) dependence of the total CCC modulus on the longitudinal displace-
ment of the mirror.
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At first glance, there is something wrong with this for-
mula. On the left-hand side there are two indices, and on the 
right-hand side in the numerator there is a sign ±. And it is 
not clear how they are related. However, this is a completely 
correct form of presentation. The fact is that the total CCC is 
the result of the interference of two backscattering sources (in 
this case, these are r1 and r23), and so it is impossible to deter-
mine which their CCC modulus is greater than the other. This 
is a typical uncertainty in the analysis of an interference pat-
tern formed by two sources. Relation (16) correctly illustrates 
this uncertainty. Below we will return to the problem of iden-
tification and show how, in a number of cases, it is possible to 
identify the contribution of the backscattering source.

Let us now consider the optical scheme of a ring resona-
tor, in which uniform deformations do not lead to displace-
ment of the optical contour vertices on the mirror surfaces 
(Fig. 4). We have a four-mirror RR with two spherical mir-
rors installed diagonally across the optical contour and 
equipped with a PZT. Under uniform expansion, the optical 
contour of the resonator turns from a square into a rhombus. 
The distance between the point sources of mirrors 2 and 4 
increases, and the distance between the point sources of mir-
rors 1 and 3 decreases. The lengths of the arms of the optical 
contour (they are also the distances between neighbouring 
point defects), as well as the rotation angles of partial CCCs, 
do not change. Therefore, the modulus of the total KKS also 
remains unchanged.

When the RR perimeter changes by 1l, the length of each 
arm of the optical circuit changes by l/4, which corresponds 
to a 180° rotation of the complex variables of the partial 
CCCs, and the value of the modulus of the total CCF changes. 
When changing the perimeter to 2l, we obtain the original 
geometry of the vectors.

The above-considered particular examples of the forma-
tion of the total CCC made it possible not only to illustrate 
the error in determining ln in the form of the lengths of the 
arms of the optical contour. Based on this consideration, we 
can formulate the main provisions of the model for the for-
mation of the total CCC in a ring resonator.

First of all, when the optical contour is deformed, it is nec-
essary to monitor the movements of the geometric centres of 
the mirrors. Changes in the total CCC are described by rela-
tion (2), in which the longitudinal coordinates of the geomet-
ric centres of the mirrors on the optical RR axis are treated as 
the parameters ln. The position of any of the resonator mir-
rors can be taken as the initial reference point.

Another important assumption on which our model is 
based is the invariance of the partial contribution of each of 
the mirrors to the total CCC under deformations of the opti-
cal resonator contour. We assume here that the optical con-
tour deformations, at which only the longitudinal compo-
nents ln change in relation (2), are small. The moduli of the 
partial CCCs do not change in this case.

The designs of modern LGs, whose monoblock housings 
are made of materials with ultra-low thermal expansion coef-
ficients (for example, zerodur or glass-ceramic), make it pos-
sible to avoid noticeable deformations of the optical contour 
even under ‘hard’ conditions of their use (for example, in the 
operating temperature range of ± 50 °С). In this case, the 
angle of inclination of the optical axis, as a rule, does not 
exceed several arcseconds, and the transverse displacement of 
the axis does not exceed several tens of micrometres.

To conclude this section, we make the following impor-
tant remark. We have considered the simplest case, when the 
surfaces of the RR mirrors contain one point defect each. The 
model can be made more complex. Let us imagine a mirror as 
an array of point sources randomly ‘scattered’ over its sur-
face. In this case, the CCC of the mirror is represented as a 
scalar sum (2), where the values of the parameters rn, jn and 
ln characterise the point sources located on its surface. This 
means that we again come to the model of one ‘effective’ 
point source, whose parameters are determined by the sum of 
all point sources.

Next, we consider how this model works when measuring 
the CCC in real monoblock ring resonators.

3. Model of point backscattering sources 
in describing experiments on measuring CCCs

3.1. Measurement of the partial CCC moduli 
of individual mirrors of a ring resonator 
using a scheme with a return mirror

The use of the method for measuring the CCC in RRs not 
filled with an active gas mixture [7] makes it possible to check 
the correctness (or incorrectness) of the model for the forma-
tion of backscattered fields. To this end, a model experiment 
was set up with a four-mirror ring resonator.

In the experiment, use was made of a resonator with a 
perimeter of 16 cm and mirrors coated with Ta2O5 – SiO2. The 
total integral scattering (TIS) of the mirrors was 20 – 30 ppm. 
PZTs were installed on two resonator mirrors. The hermetic 
housing of the RR was filled with air and had a glass appen-
dix, the internal volume of which was comparable to the total 
volume of the internal cavities of the RR (Fig. 5a). The pres-
ence of the appendix allowed the length of the optical contour 
arms to be changed in a controlled manner. For this purpose, 
the appendix was heated with a nichrome coil. At the same 
time, the air density inside the monoblock housing increased, 
the temperature of which remained at room temperature.

When measuring the CCC modulus, a scheme with a 
returnable mirror (RM) was used. The technical details of the 
measurement method can be found in [7]. Here we confine 
ourselves to a brief description.

An eigenmode oscillation is excited in the RR being mea-
sured using single-mode radiation from a probe laser. The use 
of a frequency stabilisation unit (FSU) makes it possible to 
‘lock-in’ the laser generation frequency to the RR natural 
oscillation frequency. The radiation emerging from the RR is 
incident on the RM and returns back, exciting its eigenoscil-
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Figure 4.  Deformation of the optical contour during uniform expan-
sion of a ring four-mirror resonator, in which the PZTs are mounted on 
two spherical mirrors.
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lation in the opposite direction. With longitudinal displace-
ment l of the returnable mirror, an alternation of maxima and 
minima with a period equal to l/2 is observed in the intensity 
of the counterpropagating wave (Iccw) emerging from the RR 
(Fig. 5b). These changes are the result of the interference of 
the eigenoscillations of the resonator with backscattered 
waves. The intensity of the radiation emerging from the RR is 
described by the relation:

( ) ,cosI A F
T r kl2

2

ccw cw= +9 C 	 (17)

where F is the attenuation coefficient (in intensity) of the filter 
installed in front of the RM (we assume that its reflection 
coefficient is 100 %); T is the transmittance (in intensity) of 
the output mirror; and A is a constant coefficient depending 
on the transmittance of the input and output mirrors, as well 
as on the RR losses.

Relation (17) means that two CCCs are added on the 
complex plane. In the case when T/F >> rcw, it takes the form:

Iccw » ( ) .cosA F
T

T
r F

kl1 2 2
2

cw+a k < F 	 (18)

This dependence is characterised by the contrast value, 
which includes the minimum ( I min

ccw ) and maximum ( I
max
ccw ) 

intensity values recorded when moving the RM:

C
I I
I I

T
r F2

max min

max min

ccw
ccw ccw

ccw ccw cw=
+

-
= .	 (19)

The contrast value can be increased in a controlled manner by 
increasing the attenuation factor of the filter. This simplifies 
the registration of intensity extrema and the determination of 
Cccw. Given the pre-measured values of F and T, we determine 
the CCC modulus rcw. In this example, there is no uncertainty 
in identifying the backscattering sources: the wave reflected 

from the RM, as a rule, significantly exceeds the intensity of 
the backscattered wave.

To determine the partial contributions of the mirrors, we 
use the regime of antiphase movement of two PZTs mounted 
on adjacent mirrors of the ring resonator. With such a dis-
placement of the PZT, the RR perimeter does not change. 
One PZT increases the perimeter, while the other compen-
sates for this increase. The measured dependence of r(UPZT), 
where UPZT is the voltage of one of the PZTs, is a periodic 
function of the voltage with a period corresponding to a 
change in the perimeter by 1l (Fig. 6a).
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Figure 5.  (a) Scheme of a model experiment for measuring partial CCCs of RR mirrors [(PL) probe He – Ne laser; (FSU) frequency stabilisation 
unit; (OI) optical isolator; (50 %) semitransparent plate; (PD1) and (PD2) photodetectors; (PZTp1, PZT1, PZT2, PZTbrm) piezoelectric transducers; 
(RR) ring resonator with an appendix; (RM) returnable mirror; UT is the voltage for controlling the heating temperature T of the appendix of the 
ring resonator], as well as (b) time dependences of the voltage applied to the returnable mirror and the intensity of radiation emerging from the RR. 
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With such a displacement of the piezoelectric transduc-
ers, the total CCC modulus is the result of the interference of 
two scattering sources: pairs of mirrors 1 – 2 and 3 – 4. The 
regime of antiphase displacement of two PZTs makes it pos-
sible to determine the partial CCC moduli for mirror pairs. 
Thus the partial moduli are the half-sum and half-difference 
of the maximum and minimum values of the total CCC 
modulus: 

.r r r
212,34

max min!
= 	 (20)

Thus, we obtain a pair of unidentified values of the CCC 
moduli for pairs of mirrors.

After that, the resonator appendix begins to warm up, and 
the distance between the mirrors increases. With a smooth 
change in this distance, the reference point changes and 
another pair of values, r12 and r34, is obtained. Due to the fact 
that the dependences of r12(DL) and r34(DL), where DL is the 
change in the perimeter during the heating of the appendix, 
are smooth and periodic with a period of 2l, it is possible to 
‘link’ these values with each other. As a result, we have two 
continuous dependences (Fig. 6b). As expected, these are 
periodic dependences on the change in the RR perimeter with 
a period equal to 2l. With such a change in the perimeter, 
each resonator arm changes its length by l/2, and the partial 
CCCs on the complex plane rotate by 360°.

Having measured the maximum and minimum values of 
r12(L) and r34(L), we determine the partial values of the 
CCC moduli. In this case, with a relative error of ~20 %, 
they were: r1 = 0.3 ppm, r2 = 1.3 ppm, r3 = 0.5 ppm, and 
r4 = 2.1 ppm. Obviously, the uncertainty in the index num-
bers implies the possibility of changing the pair of mirrors 
1 – 2 to the pair 3 – 4, as well as changing the indices within 
the pair. Nevertheless, we succeeded in determining the par-
tial contributions to the total CCC of all the mirrors of RR 
in question.

Note that when assembling this RR, we used mirrors 
that had approximately the same quality. The value of the 
total integral scattering (TIS) of the mirrors was about 
30 ppm. Such a large scatter in the values of the CCC moduli 
is mainly due to the speckle structure of the backscattering 
field inside the RR [8]. In this case, the parameter distribu-
tion histograms characterising the backscattering of the mir-
ror arrays of the ring resonator obey the Rayleigh distribu-
tion [9]

( ) expf
22 2

2

r
s
r

s
r

= -f p,	 (21)

where f( r) is the distribution density of the random parame-
ter r; and s is the scale parameter, approximately equal to the 
average value of the parameter r.

A characteristic property of this distribution is that the 
average value of the parameter coincides with the value of its 
root-mean-square deviation (RMS) obtained by processing 
the data array. In the considered example, the average value 
of the CCC modulus for four mirrors was 1.05  ppm at 
RMS =  0.8  ppm. Of course, such an insignificant array of 
data is clearly not enough to generalise the results; however, 
there is no obvious contradiction in the obtained measure-
ment results.

3.2. Model of point backscattering sources 
in the description of CCCs of counterpropagating waves

Until now, the process of the formation of the CCC modulus 
of one of the counterpropagating RR waves has been 
described by the model of point backscattering sources o. 
This greatly simplifies the analysis of the situation. We limited 
ourselves to consideration of relation (2) for the CCC modu-
lus, which includes constant values of the partial CCC moduli 
and linear displacements of the mirrors. For the same reason, 
phase shifts arising during backscattering on mirrors do not 
enter into this relation. Formally, they can be included as 
additions to the longitudinal coordinates of point sources, 
especially since the position of a point source does not neces-
sarily coincide with the geometric centre of the mirror.

It is easy to show that when all backscattering sources 
have the same phase shift (jn = jcw = jccw), the CCC moduli 
of the counterpropagating waves are the same (rcw = rccw). 
The situation changes qualitatively when the backscattering 
sources included in relation (2) have different phase shifts. Let 
us show this by the example of the interference of two point 
backscattering sources (Fig. 7).

Each of these sources is characterised by its partial CCC 
modulus, the value of phase shift that occurs during backscat-
tering, and the longitudinal coordinate on the optical RR 
axis. The total CCC of this system can be written in the form:

rcw, ccw = Rexp(ijR) + rexp(ijr ± 2ikl).	 (22)

When the difference between their longitudinal coordinates 
changes, a difference appears between the CCC moduli of 
counterpropagating waves, which is described by the relation:

4 (2 ) ( ) .sin sinr r rR klcw ccw R r
2 2 j j- = - 	 (23)

As regards phase shifts of backscattered waves, one 
should take into account the structure of the system of equa-
tions describing the amplitudes of counterpropagating waves 
and their phase difference (see, for example, [1]). The phase 
shifts during backscattering enter these equations as a sum 

jR = jr jR ¹ jr
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Figure 7.  Vector diagrams of the summation of two CCCs of point 
backscattering sources in the case of (a) identical (jR = jr) and (b) dif-
ferent (jR ≠ jr) phase shifts.
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j = jcw + jccw. As a result, the equations do not contain an 
addition to the phase shift 2kl associated with the longitudi-
nal coordinate of the source, and the total value of the phase 
shift turns out to be invariant over the entire optical contour 
of the RR, independent of the reference point on the optical 
axis. Therefore, by the CCC of counterpropagating waves, 
one should mean not four parameters (two moduli and two 
phase shifts), but three, i.e. rcw, rccw, and j.

Returning to the interference of the backscattered fields of 
two point sources (with different values of the phase shift), we 
note that when the difference in their longitudinal coordinates 
changes, the total phase shift does not remain constant and 
changes in a wide range from 0 to 2p. Relations (22) and (23) 
involve two point sources with arbitrary values of the phase 
shift caused by backscattering. To consider the model for the 
formation of the CCC, we specify these values.

The authors of Refs [1, 3] mention two types of backscat-
tering sources: conservative and dissipative. In the case of a 
conservative backscattering source, the phase shift is p/2 (or p 
for the total phase shift). This type of backscattering is associ-
ated with inhomogeneities in the refractive index. Dissipative 
backscattering is caused by an absorption coefficient that is 
inhomogeneous over the mirror surface, and the magnitude 
of the phase shift in this case is p (2p or 0 for the total phase 
shift). Nonlinear distortions of the LG scale factor are deter-
mined by the influence of both types of backscattering. In 
particular, in an LG without a bias, the dependence of the 
nonlinear correction of the scale factor on the angular veloc-
ity of rotation, DK(W ), is described by the well-known rela-
tion [10]

( ) ( )
,K L

c S S
1

2 2
12

2

2 2

g
2 2

nD D
W W W W

= - =- -
+

+ -a k > H 	 (24)

where c is the speed of light; Dv is the frequency of beats of 
counterpropagating LG waves; and Wg is the limit cycle 
strength of the ring laser. Parameters S+ and S– are the fol-
lowing CCC combinations:

,cosS r r r r2cw ccw cw ccw
2 2 j= + ++ 	 (25)

.cosS r r r r2cw ccw cw ccw
2 2 j= + -- 	 (26)

The first combination S+ is a dissipative backscattering com-
ponent and determines the lock-in threshold (Wl ) of the LG:

.L
c SlW = + 	 (27)

The second combination S– is a conservative backscattering 
component and determines the positive sign of the correction 
of the LG scale factor at high angular velocities of rotation.

The experiments performed in [10, 11] showed that in an 
LG based on a 632.8-nm ring He – Ne laser, there is no cor-
relation between the backscattering components, and the 
average value of the conservative component is 5 – 7 times 
higher than the average value of the dissipative component. 
Therefore, when describing the model for the formation of a 
CCC of a mirror, we assumed that there are two arrays of 
point backscattering sources, a conservative and a dissipative 

one, on its surface. Consequently, in relations (22) and (23) 
we can assume that jR = p/2 and jr = p.

Within the framework of this model, three parameters are 
used in the formation of the CCC of the mirror: the CCC 
moduli of the conservative ( R ) and dissipative ( r ) backscat-
tering components, as well as the phase shift parameter z = 
2kl, where l is the difference between the longitudinal coordi-
nates of point sources. The CCC moduli of the backscattering 
components and z are related to the CCC moduli rcw, rccw, 
and j as follows:

,R S
2= - 	 (28)

,r
S
2= + 	 (29)

4
.arcsin

cosr r r r

r r
2 2

cw ccw cw ccw

cw ccw

2 2 2 2

2 2

z
j

=
+ -

-

_ i
> H 	 (30)

We used these relations to determine the CCC moduli of the 
backscattering components from the results of measurements 
of the CCCs in four-mirror RRs [7].

When measuring the CCC of counterpropagating waves, 
a scheme with an optical mixer [7] (Fig. 8a) is used, in which 
eigenoscillations in opposite directions are simultaneously 
excited in the measured RR by the radiation of a probe laser. 
When the mixer mirrors are moved in the intensities of the 
waves (Icw and Iccw) emerging from the RR, small (on the level 
of fractions of a percent) intensity variations are observed, 
which are associated with the interference of the fields of nat-
ural oscillations and backscattered waves. The dependences 
of the intensities Icw and Iccw on the phase difference c of the 
excited eigenoscillations are described by the relations:

Icw » ( ) ,cosE
r

1
4 ccw

ccw0
2

d c j+ +< F 	 (31)

Iccw » ( ) ,cosE
r

1
4 cw

cw0
2

d c j+ -< F 	 (32)

where E0 is the field amplitude. The process of measuring the 
CCC is based on the introduction of a controlled change in 
the phase difference c. The contrast of the intensities of the 
radiations emerging from the RR is directly proportional to 
the moduli of the corresponding CCCs, rcw and rccw, and the 
shift between their extrema is determined by the total phase 
shift j = jcw + jccw that occurs during backscattering.

Of greatest interest in this case are the dependences of the 
CCC moduli obtained with antiphase movement of two 
PZTs. In this case, it is possible to determine the CCC moduli 
of conservative and dissipative backscattering components 
for two pairs of mirrors. The result of one of these measure-
ments is shown in Fig. 8b. The values of rcw, rccw and j were 
measured experimentally.

The measured dependences of the CCC moduli and the 
phase shift were approximated using relations (28) – (30). The 
results of this approximation are shown in Fig. 8b by solid 
lines. The calculated dependences of the CCC moduli of the 
conservative and dissipative backscattering components are 
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also presented in the figure. One can see that the used model 
of interference of the fields of conservative and dissipative 
backscattering sources describes well the results of our exper-
iments. Within the framework of this model, it is possible to 
explain the noticeable difference in the CCC moduli of coun-
terpropagating waves, rcw and rccw, observed in a number of 
experiments, as well as the behaviour of the total phase shift 
j during the antiphase movement of the PZTs.

In addition, a model experiment was performed with a 
RR having a glass appendix. In this case, we used a four-mir-
ror RR with a perimeter of 28 cm; the mirrors were coated 
with Ta2O5 – SiO2. The TIS of the mirrors was about 20 ppm. 
The resonator was formed by two flat mirrors and two spher-
ical ones with curvature radii of ~6  m. Two PZTs were 
installed on neighbouring spherical mirrors. The cyclogram 
of above-described measurements was reproduced when 
determining the partial CCC moduli of the mirrors. This 
made it possible to measure for each of the RR mirrors the 
CCC moduli of the dissipative and conservative backscatter-
ing components. The results of measurements of the CCC 
moduli of the dissipative components are presented in Table 1.

During the experiment, we performed two cycles of mea-
surements. After the first cycle, four partial values of the dis-
sipative components were determined. Then, one of the flat 

mirrors of the resonator was removed from the monoblock 
housing and, before being reinstalled on the optical contact, it 
was turned around its axis by an angle of ~90°. After that, the 
second cycle of measurements of the dissipative components 
was carried out and four more values were determined.

In Table 1, the obtained values are grouped as follows. 
Mirrors 2, 3, and 4 are grouped according to the approxi-
mate equality of values in two measurement cycles. The par-
tial CCCs of these mirrors did not change when one flat mir-
ror was reinstalled. The difference in the values of the dissi-
pative components in two measurement cycles is due to the 
error of the measuring setup. The relative error in this case 
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Figure 8.  (a) Optical scheme using an optical mixer for measuring the CCC moduli of counterpropagating waves in a four-mirror RR with anti-
phase movement of two PZTs [(PL) probe He – Ne laser; (OI) optical isolator; (OM) optical mixer; (PZTp1, PZT1 – PZT4 ) piezoelectric transducers; 
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Table  1.  Partial CCC moduli of the dissipative backscattering 
components of the mirrors of a four-mirror resonator.

Mirror number
Dissipative component 
(1st measurement cycle)/ppm

Dissipative 
component 
(after mirror 
rotation)/ppm

1 0.38 0.1

2 0.24 0.17

3 0.15 0.11

4 0.1 0.09
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did not exceed 20 %. One of the values (mirror 1) changed 
when the mirror was rotated almost 4 times. Such a large dif-
ference in the measured values makes it possible to identify 
this mirror.

One more of the mirrors can also be identified. Let us 
show that this is a flat mirror 2. The fact is that with this 
method of measurement (antiphase movement of the PZT), 
we determine the CCCF values for two pairs of mirrors – 
movable (on the PZT) and stationary. Having identified one 
of the mirrors, we have identified a pair. This means that mir-
ror 2 was identified by the elimination method. This is a flat 
mirror. For a pair of spherical mirrors, it is not possible to 
identify the number of mirrors in this case.

As in the case of measurements of partial CCC moduli, 
the scatter of the CCC moduli of the dissipative backscatter-
ing components turned out to be significant. It is noteworthy 
that these values for mirror 1 changed by a factor of 4 when it 
was rotated around its axis. This behaviour of the CCC is a 
direct consequence of the action of the speckle structure of the 
backscattered fields in the ring resonator. This feature of the 
behaviour of partial CCCs when the mirror is rotated can be 
used to lower the LG lock-in threshold during alignment.

The use of arrays of dissipative and conservative back-
scattering sources allows the adjustment process to be simu-
lated. In this case, the main adjustable parameter is the angle 
of rotation of the mirror around its axis. The authors of Ref. 
[11] drew attention to this feature of the behaviour of back-
scattering speckle structures. They suggested turning the RR 
mirror in such a way that the dark field of the speckle struc-
ture of the radiation scattered by the mirror would fall into 
the counterpropagating wave. The simulation results of such 
an adjustment process are presented below.

4. Model of a mirror consisting of two 
independent arrays of dissipative 
and conservative point sources

Let us consider a model of two independent arrays of point 
backscattering sources (dissipative and conservative) ran-
domly scattered over the mirror surface. Each of these arrays 
includes 1000 sources with the same value of the CCC modu-
lus. The measurement data of the CCCs in the RR [7, 10] for 
multilayer dielectric mirrors with Ta2O5 – SiO2 and TiO2 – 
SiO2 layers show that the conservative component is 3 – 7 times 
larger than the dissipative component. In our calculations, we 
set the value of the ratio of these components equal to 5.

Let us assume that all point sources have the same CCC 
moduli: R0 are conservative and r0 are dissipative. In this case, 
the total values of the CCC moduli of the arrays are presented 
in the form:

( ) ,exp iR R n
n

0
1

1000

f=
=

/ 	 (33)

( ) ,exp ir r Fm
m

0
1

1000

=
=

/ 	 (34)

where fn and Fm are quantities that vary randomly in the 
range from 0 to 2p. When performing calculations, we set the 
values of the moduli of point sources as follows: R0 = 0.05 ppm 
and  r0 = 0.01 ppm.

Using a random number generator (1000 pairs of fn and 
Fm  values), it is possible to obtain histograms of the distribu-
tions of the CCC moduli of the conservative and dissipative 
backscattering components. With 106 realisations, the shape 
of these histograms differs little from the Rayleigh distribu-
tion (Fig. 9).

In the case when all backscattering sources have the same 
phase shift value, the modulus of the total CCC is the sum of 
the moduli of individual point sources. With a random value 
of the phase shift, the average value of the CCC modulus is 
approximately 2 % of this value: 1 ppm for conservative 
sources and 0.2 ppm for dissipative ones. A similar behaviour 
of the histograms of the conservative and dissipative back-
scattering components was observed in [10], where statistical 
data are presented for 220  LGs, collected using mirrors of 
approximately the same quality. At the same time, there was 
a lack of correlation between the measured values of these 
two backscattering components.

Let us consider how the CCC moduli will change when the 
mirror rotates around its axis. The mirror is located on the 
edge of the monoblock housing of the LG, and so the angle of 
incidence remains unchanged (we will assume the mirror 
being adjusted to be flat). When the mirror is rotated, the 
coordinates of point sources on the optical RR axis change 
(Fig. 10). As a result, the phase shifts fn and Fm also change. 
Of course, the change in the phase of a point source is deter-
mined mainly by its position relative to the rotation axis. Let 
us try to estimate the scale of the change in the phase shift. We 
assume that the point source is located from the mirror rota-
tion axis at a distance equal to the waist radius w of the RR 
mode. When the mirror is rotated by an angle F, the phase 
will change by 4pwcosF/l (we assume that F << 1).

Let us perform numerical estimates for w = 300 mm and 
l = 0.63 mm. At such values, the phase incursion of the back-
scattering source will change by the value p when the mirror 
is rotated through an angle F » 0.0005 rad (approximately 
10¢¢). In the case of arrays of backscattering sources, ran-
domly scattered on the working zone the mirror, the phase 
shifts  fn and Fm in relations (33) and (34) will change in dif-
ferent ways; for example, for a backscattering source located 
on the rotation axis, the value of the phase shift will remain 
unchanged.

It is clear that the type of dependence of the CCCs of 
arrays of point sources on the angle of rotation of the mirror 
is determined by their initial distribution on its surface. As an 
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Figure 9.  Rayleigh distributions of the CCC moduli for (solid curve) 
dissipative and (dashed curve) conservative components of arrays con-
sisting of 1000 point backscattering sources; R0 = 0.05 ppm and r0 = 
0.01 ppm.



	 E.A. Petrukhin, A.S. Bessonov400

example, Fig. 11 shows the dependences of the CCC moduli 
rcw and rccw on the angle of rotation, as well as the total phase 
shift for two arrays of point sources. The initial position of 
1000 point sources of arrays is chosen using a random num-
ber generator.

The resulting dependences are quite complex. Analysing 
them, we can distinguish the following three features. The 
first of them is associated with a large spread in the values of 
the CCC moduli. If we consider the rotation angle F as a ran-
dom variable, then the histograms of the chosen conservative 
and dissipative backscattering components of the arrays the 
form of a Rayleigh distribution. For this reason, Fig.  11 
shows only a small fragment of these dependences when the 
rotation angle changes by ± 0.5 deg. It can be seen that the 

characteristic angular scale of the change in the CCC moduli 
is 1 – 2 arc minutes. The second feature is due to the difference 
in the CCC moduli for counterpropagating waves, which at 
some angles of rotation of the mirror can reach 10 times. The 
third feature is the change in the value of the total phase shift 
in a wide range of values 0 – 2p. Note that all three features in 
the behaviour of the backscattering parameters are observed 
in CCC measurements in LGs [7], i.e., the proposed model of 
point backscattering sources is in qualitative agreement with 
the experimental results.

From a practical point of view, the influence of the angle 
of rotation of the mirror on the values of the moduli of the 
conservative and dissipative components can be used to orga-
nise the RR alignment process. As can be seen from the above 
dependences presented, at some values of the angle of rota-
tion, it is possible to achieve a noticeable decrease in the val-
ues of the CCC moduli of both backscattering components.

5. Conclusions

The model of point backscattering sources adequately 
describes the results of CCC measurements in the LG. This 
model is based on two main assumptions. Firstly, it is assumed 
that the partial CCCs of the mirrors do not change with 
deformations of the contour of the optical RR axis, and sec-
ondly, that the phase shifts in the scalar sum (2) are deter-
mined by the distances between the geometric centres of the 
mirrors.

The partial CCcs of an individual mirror are represented 
as a scalar sum of two arrays of point sources, conservative 
and dissipative, differing in the magnitude of the phase shift 
that occurs during backscattering. Taking into account the 
fact that there is no correlation in the positions of these arrays 
on the mirror surface [10], the backscattering of the mirror is 
characterised by three parameters. These include the CCC 
moduli of the conservative and dissipative backscattering 
components, as well as the phase shift associated with a 
change in the positions of the arrays relative to each other.

The number of point defects in the working area of the 
LG can be estimated as 106 – 107 or more. This estimate fol-
lows from the fact that the surface roughness of the mirror 
substrate is characterised by a correlation length of tenths of 
a micrometre. Such a large number of defects, randomly 
‘scattered’ over the mirror surface, is the cause of the speckle 
structure of the scattered laser radiation. The backscattered 
field is a complex combination of bright and dark spots and 
stripes. The angular size of an individual speckle is several arc 
minutes ( l/2w, where 2w is the mode waist diameter). The 
same value is also given by the estimate of the RR aperture 
[12]. For this reason, no more than one bright or dark speckle 
spot of scattered radiation enters the RR aperture. This leads 
to a large scatter of the CCC moduli of the backscattering 
components of ring resonators assembled from mirrors with 
the same value of the total integral scattering. It is no coinci-
dence that the histograms of the distributions of these param-
eters (for a batch of several hundred RRs) are well described 
by the Rayleigh distribution.

This feature of the behaviour of the backscattered fields 
can be used in the development of an alignment method that 
makes it possible to significantly reduce the CCC moduli of 
the dissipative and conservative backscattering components. 
When the mirror rotates around its axis by an angle equal to 
fractions of a degree, the CCC moduli of the conservative and 
dissipative backscattering components change by more than 
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Figure 10.  Change in the phase of a point backscattering source when 
the mirror rotates around its axis. The horizontal axis coincides with the 
projection of the optical contour of the resonator.
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an order of magnitude. To measure the partial CCC moduli 
of the conservative and dissipative backscattering compo-
nents, it is necessary to move the mirror being adjusted along 
the contact surface of the monoblock housing (in the plane of 
the optical contour) by a distance of ~1l. The partial CCC 
contribution of the mirror being aligned is determined from 
the analysis of variations in radiation intensities of counter-
propagating waves emerging from the RR.

It is obvious that the authors are aware of all the difficul-
ties associated with the use of the method of measuring the 
CCCs when adjusting LG resonators. The main difficulty lies 
in solving the technical problems that arise during the move-
ments of the aligned mirror, which consist of its rotation 
around its axis and movement along the contact surface of the 
monoblock housing. These movements should not be accom-
panied by noticeable perturbations of the RR perimeter, 
which lead to a failure of the frequency stabilisation unit that 
locks in the generation frequency of the probe laser to the 
frequency of the natural oscillation of the aligned resonator. 
Also undesirable are changes in the angle of incidence of radi-
ation on the mirror by more than 1¢¢, leading to a noticeable 
shift of the optical axis of the RR relative to the position of 
the selective diaphragm.

Thus, when designing such an alignment setup, the central 
task is to create a device for moving the mirror being adjusted. 
One may also have to correct the characteristics of the fre-
quency stabilisation unit. At present, when measuring the 
CCC, the frequency of the radiation of a probe laser is stabi-
lised by resonances of the power of the radiation emerging 
from the RR. An error signal formed from the first derivative 
of the resonance is applied to the PID controller with a cutoff 
frequency of about 200 Hz. To create an alignment setup, one 
may need a faster FSU.

To date, installations for measuring the CCC have an 
interesting metrological option that allows one to control the 
backscattering parameters at all technological stages of 
assembly and vacuum-technological processing of the RR in 
an LG. In particular, we are able to determine the CCC mod-
uli of the dissipative and conservative backscattering compo-
nents for individual resonator mirrors, predict the values of 
nonlinear corrections of the LG scale factor and the value of 
the lock-in threshold. We hope that the results of this work 
will attract the attention of developers and help reduce the 
impact of backscattering effects in LGs.
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