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Abstract.  We consider an ordered array of semiconductor single-
electron quantum dots located in the antinode of a mode of a micro-
cavity based on a two-dimensional photonic crystal. The influence 
of Coulomb effects on the energy exchange between quantum dots 
and the mode is studied in arrays for different numbers of dots. The 
stability of resonant electron – photon dynamics is analysed as a 
function of technological deviations of the dot parameters caused 
by the imperfection of the manufacturing procedure. Using the data 
of numerical simulation of the spectroscopic response of the system, 
criteria are formulated for using such a structure as a detector of 
localised charges. The parameters of the photonic crystal are cho-
sen, which make it possible to implement the proposed measure-
ment scheme.

Keywords: quantum measurement, laser, photonic crystals, quan-
tum dots, electrons, Coulomb interaction, Förster effect.

1. Introduction 

Multicomponent systems based on semiconductor quantum 
dots (QDs) are widely used in various micro- and nanoelec-
tronic devices [1 – 3]. A high degree of discreteness of the 
energy spectrum promotes the use of QDs as functional ele-
ments of such devices as a single-electron transistor [4], quan-
tum point contact [5], quantum turnstile [6], and cellular 
automaton [7]. There are a number of proposals on how to 
implement the concept of a quantum chip for processing and 
storing quantum information using QDs controlled by exter-
nal fields. The most promising for practical application are 
schemes for encoding information into electronic, elec-
tron – hole (exciton) and spin degrees of QD freedom [8 – 10]. 
According to the method of external control, they can be 
divided into electrical, optical and magnetic. Currently, there 
are working prototypes of all the mentioned devices. The 
main advantages of QDs include their compactness, a variety 
of shapes and types, the ability to operate at relatively high 
temperatures, and reliable compatibility with other chip com-
ponents. If we talk about quantum information processing, 
then the main problem is maintaining the coherence of the 
state of quantum bits (qubits), which requires maximum sup-
pression of dissipative processes. In addition, it is necessary to 
be able to control the size, chemical composition and position 

of the QD in space, as well as to ensure that the control inter-
face is placed in close proximity to the QD. All these issues are 
being actively studied. 

A serious problem for theoretical modelling is the incom-
plete consideration of the Coulomb effects caused by the 
interaction of QD electrons. As a rule, researchers confine 
themselves to calculating the Stark shifts of the QD energy 
levels. This approach is sufficient only for the conceptual 
analysis of elementary quantum operations [11, 12]. The point 
charge approximation can be used to qualitatively estimate 
the shift energy as a function of the distance between the cen-
tres of two QDs. At the same time, there are a number of 
problems in which it is required not only to correctly calculate 
the diagonal matrix elements (i.e., Stark shifts) of the 
Coulomb interaction Hamiltonian for a given spatial distri-
bution of the electron density in a QD, but also to take into 
account off-diagonal matrix elements with the required accu-
racy. The latter describe two-particle processes that manifest 
themselves in the modulation of the time dependences of the 
probability amplitudes of the QD states. 

The aim of this work is to study the features of the spectral 
response of an array of single-electron QDs placed in the mode 
of a high-Q microcavity (MC) based on a two-dimensional 
photonic crystal (PC). Calculating the coefficient of photon 
transmission through the MC makes it possible to determine 
the operating characteristics of the structure and formulate cri-
teria for its being in one or another dynamic mode. As follows 
from the simulation results, the Coulomb effects can either 
increase or decrease the sensitivity of the array to changes in the 
ambient field produced by an electron in an external (mea-
sured) QD, depending on the parameters of the QD array and 
MC. In addition, the stability of the system response to fluctua-
tions in the QD parameters caused by the imperfection of their 
manufacturing technology was studied. Critical deviations are 
indicated, above which the enhancement of the electron – pho-
ton interaction becomes ineffective. Using the numerical solu-
tion of the Maxwell equations by the finite-difference time-
domain method, the optical characteristics of PCs with defects 
of various types are simulated. The PC parameters are found 
that ensure the equality of all Rabi frequencies of the MC mode 
energy exchange with each QD in an array consisting of a large 
number of QDs. 

2. Spectroscopic response of an array of single-
electron QDs interacting with the MC mode 

To describe the quantum evolution of an array of N single-
electron QDs located inside the optical volume of the MC 
mode with a frequency wc, we use the following model. Let 
there be two states in the kth QD: the ground state | gk ñ with 
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energy eg, k and the excited state | ek ñ with energy ee, k (we do 
not consider its other states). The frequencies of optical elec-
tronic transitions are assumed the same for all QDs: wk = ee, k 
– eg, k = wa (hereinafter, ħ ≡ 1). The Rabi frequency of the 
energy exchange of the kth QD with the MC mode because of 
photon emission/absorption is Wk = á gk| – eEcrk| ek ñ, where Ec 
is the amplitude of the MC mode field; and rk is the electron 
radius vector in the QD. The amplitude of the mode field 
depends both on the geometry of the QD and on its spatial 
position in the volume of the mode, and can differ signifi-
cantly even for neighbouring QDs. As already mentioned 
above, the Coulomb effects play an important role in the 
dynamics of a many-electron system. They can be divided 
into diagonal and off-diagonal effects. The first group is asso-
ciated with energy shifts of QD states caused by the interac-
tion of electrons. The second group describes: a) resonant 
processes that cause energy transfer between two QDs with-
out charge transfer (Förster effect) [13]; and b) non-energy-
conserving virtual processes that lead to dynamic shifts in the 
QD levels. The general expression for the Coulomb matrix 
elements is given by the formula [14] 

Y Y Y2 ( ( ( ) ( / | |d dV r r r r r r r r,
* *

if f ik m k m m m k k mY= -) ) )kyy ,	 (1)

where Yi(f )(rk) is the one-electron wave function of the initial 
(final) state, localised in the kth QD. For ease of identifica-
tion, we supplement this notation with a superscript that 
specifies the specific process described by this matrix element. 
The units of measurement are effective atomic units: 1  e.a.u.  = 
Ry* = m*Ry/mee2 for energy and 1 e.a.u. = aB* = aBB me e/m*  
for the length, where Ry =13.6 eV is the Rydberg energy;  
aB = 0.52 ´ 10–10 m is the Bohr radius; me is the mass of a free 
electron; m* is the effective electron mass; and e is the permit-
tivity of the semiconductor. For gallium arsenide GaAs (e = 
12, m* = 0.067), we have Ry* = 6 meV and aB* = 10 nm. 

The parameters of the QD potentials are chosen such that 
the tunnel connection between neighbouring QDs can be 
ignored. This is achieved mainly due to the localisation of the 
energy levels of both the ground and excited states, as well as 
the positioning of neighbouring QDs at a distance signifi-
cantly exceeding their characteristic size. Laser radiation with 
a frequency wlas close to the frequency wc of the MC mode is 
focused on the sample surface. The energy is supplied to the 
MC mode from the laser field with the rate W las. We will 
assume that the pump rate is such that no more than one exci-
tation quantum can be present in the structure. Then the 
Hamiltonian of the system has the form: 
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Here a is the photon annihilation operator in the MC mode; 
when describing the energy exchange between QD and the 

mode, the rotating wave approximation is used, which 
assumes that the condition  wk >>   Wk is satisfied. The Förster 
energies V ,

F
k m  characterise the frequency of the resonant 

energy exchange between QDs caused by the Coulomb inter-
action. This process is superimposed on the electron – photon 
dynamics of the QD array in the MC, leading to its modifica-
tion. Nonresonant Coulomb matrix elements V ,

,ge g
k m  generate 

small, rapidly oscillating dispersion shifts of the QD fre-
quency. 

Considering the configurations of QD arrays, one should 
choose those for which the majority of QDs will be located in 
the antinodes of the MC mode. The spatial dependence of the 
field amplitude is largely determined by the type and shape of 
the MC itself. In our work, we study a linear array (chain) of 
QDs located in the region of a defect in a lattice of Bragg 
holes of a two-dimensional photonic crystal forming a MC 
[15] (Fig. 1). The distance between the centres of neighbour-
ing QDs is ad. The dimension of the space of basis vectors is 
N + 2. The vector | 1 ñ = | gk ...gN ñ| 0c ñ describes the vacuum 
state of the electron – photon system, and the vector   | 2 ñ = 
| gk ...gN ñ| 1c ñ corresponds to the presence of one photon in the 
MC mode. The remaining vectors  | k + 2 ñ = | g1 ...ek ...gN ñ| 0c ñ 
(k = 1 – N) describe the excitation of an electron in the kth 
QD. The state vector

| Y ñ = |c kk
k

N

1

2

=

+

/

of the system is presented as an expansion in basis vectors 
with the coefficients ck depending on time. The evolution of 
the state vector obeys the Schrödinger equation   i∂t| Y ñ = 
H | Y ñ with the initial condition | Y (0) ñ = | 1 ñ. By applying the 
transformation

| |exp iT t a a e eklas k
k

N

1

w= - +
@

=
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to the Hamiltonian H, its time dependence can be eliminated. 
In this case, the frequencies of the MC and QD modes are 
shifted by the frequency wlas. In addition, one should take 
into account incoherent processes of photon dissipation asso-
ciated with the escape of energy from the MC to the contin-
uum at a rate of k, and electronic relaxation at a rate of gk  due 

MC

adwlas, Wlas

Lx
Ly

PD

Figure 1.  Schematic of a linear QD array placed in the antinode of the 
mode of an MC formed by a defect in a two-dimensional photonic crys-
tal. A cw laser with a frequency wlas performs pumping in a subphoton 
stationary regime at a rate Wlas. The average number of photons emitted 
by the MC is measured by the photodetector PD. The tested QD with 
coordinates Lx and Ly is in the plane of the array.
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to the interaction of the kth QD with the phonon environ-
ment. A rigorous consideration of these phenomena is possi-
ble within the formalism of the density matrix and the 
Lindblad equation; however, an approximate solution that is 
valid for a low probability of excitation of the system from a 
vacuum state can be found using a simpler formalism of the 
Schrödinger equation. To this end, in Eqn (2) one should 
make the replacement wc → wc – ik and wk → wk – igk. 

Let us choose the value

V,
gg

g k
k

N

km
m k

0
1

e e= +
2=

/ /

as the origin of the ‘QD array +MC’ system energy. In addi-
tion, we assume that the energies of the off-diagonal Coulomb 
components V ,

,ge g
k m  and V

F
,k m  can be ignored (see below). The 

Schrödinger equation, taking into account the above trans-
formations and assumptions, turns out to be equivalent to the 
system of equations for the probability amplitudes of the 
basis vectors in the expansion of the state vector | Y ñ
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where the detuning dc = wc – wlas of the mode frequency and 
the detunings dk = wk – wlas of the QD transition frequencies 
from the laser frequency are defined and the parameters

( )G V Vge g
k km km

g

m k

= -
!

/

are introduced to characterise the nonequivalence of the 
Coulomb interaction of an electron in the ground state of the 
kth QD with electrons of the QD array in the vacuum and 
singly excited states. They represent frequency shifts of opti-
cal transitions in a QD. 

Let us obtain an approximate solution of system (3) in 
the steady state of subphoton pumping, when c1 » 1 and 
∂t ck » 0. We will be interested in the average photon popula-
tion   á n ñ = | c2 |2 of the MC mode, which determines the 
transmission coefficient, i.e. the number of photons coming 
from the source to the detector through the structure. A sys-
tem of N + 2 homogeneous differential equations reduces to 
an inhomogeneous algebraic system of N + 1 equations, 
solving which we find an expression for the population of 
the MC mode: 

á n ñ » 
i F F

Flas

c m m
m

N
2

1

2

2 2

d k W

W

- -
=

] g /
,	 (4)

where

iF Gm k k k
k m

N

d g= + -
!

^ h%  and iF G
1

k k k
k

N

d g= + -
=

^ h%

are products of resonant denominators of the QD array. In 
the absence of interaction between QDs and the MC mode 
(Wm = 0), the denominator of expression (4) describes a 
Lorentz curve with a maximum at the frequency of the MC 
mode. In addition to the photon response of the structure 
itself, we will be interested in the effect of an additional (opti-
cally inactive) QD located outside the structure on its 
response. If there is an electron in a given QD, then this fact is 
manifested in additional shifts of transition frequencies in all 
QDs of the array, Gk → Gk + Gk' . Therefore, by comparing the 
system response á n ñ with the calibration dependence á n0 ñ 
obtained in the absence of an electron in the measured QD 
(Gk' = 0), one can determine whether the given QD contains 
an electron or not. The measurement is best carried out at the 
laser frequency for which the response difference is maxi-
mum. In order to characterise the sensitivity of the structure 
to external charges and fields quantitatively, we introduce a 
new function – the measurement contrast 

maxS
n

n n
max

0

0=
-c m.	 (5)

Smax depends both on the properties of the QD array and MC 
and on the distance to the tested QD. It is logical to assume 
that for an array consisting of a large number of QDs, the 
Coulomb interaction between it and the measured QD will 
substantially modify the response. However, as we will see in 
Section 4, this issue is much deeper and requires more careful 
study. In particular, the electron – electron interaction within 
the QD array itself has a significant impact on the measure-
ment accuracy. In addition, there is a condition necessary for 
the collective Tavis – Cummings polariton splitting [16]. The 
issue is the approximate equality of the interaction coeffi-
cients of the array QDs and the MC mode:  W1 » W2 » ... » 
WN ≡ Wc. If all QDs are oriented with respect to the Cartesian 
axes in the same way and have close parameters, then the sec-
ond condition also requires that the mode field amplitude be 
constant in the region where QD is located. Section 3 shows 
examples of the MC where this condition is met. 

3. Optimisation of the interaction between 
the QD array and the PC-based MC mode 

There are several classes of high-Q semiconductor MCs, into 
which single QDs or their ensembles can be integrated using 
modern technologies. These are MCs that support whispering 
gallery modes, for example, microdisks [17], and Bragg reso-
nators based on semiconductor layered heterostructures [18], 
and MCs, which are defects in the periodic lattice of one- and 
two-dimensional PCs [19, 20]. The last class of MCs is the 
most common due to the variety of types of defects deter-
mined by the location and number of missed holes, which 
allows different configurations of electromagnetic fields con-
centrated in a MC to be obtained. Let us list some of them: S1 
is one missing hole in a square lattice [21], L3 is three missing 
holes arranged in a line [22], and H1 is one missing hole in a 
hexagonal lattice [23]. In one-dimensional PCs, on the con-
trary, there are limitations on the design of defects due to its 
linear structure, and the control of the electromagnetic field 
distribution in microdisks, e.g., by creating a shape asymme-
try, can cause a decrease in their quality factor [24]. 

In this regard, we chose the MC in the form of a two-
dimensional PC, in the centre of which there is a defective 
region ensuring the localisation of the electromagnetic field. 
As will be shown below, the operation of the detector is most 
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efficient when the eigenfrequency wс of the mode is close to 
the frequency wa of the electronic transition between the 
ground and excited states in the conduction band. Its typical 
value for GaAs QD is 0.1 eV, which corresponds to the pho-
ton wavelength in vacuum  l0 » 12 mm. In addition, Section 4 
shows the results for a linear array of a small number of QDs 
(N = 6), as well as for an extended chain of QDs (N = 30), with 
different distances between neighbouring QDs. In order for 
the Rabi frequency Wс in the array to be approximately the 
same for all QDs, it is necessary to select the PC parameters 
so that the electric field of one of its modes varies slightly over 
an array length of 0.3 – 2.5 mm. To this end, we simulated the 
spectral characteristics of a PC formed by a square array of 
holes etched in a GaAs plate with a period b = 3 mm and a 
radius R = 0.37b (Fig. 2). 

Calculation of eigenfrequencies and distribution of the 
electromagnetic field of the optical structure was carried out 
using the numerical solution of Maxwell’s equations by the 
finite-difference time-domain method. First, we studied the 
optical properties of a PC, in the centre of which there is a 
defect representing a single missing hole (S1 defect). It sup-
ports two TE eigenmodes (Ez = 0) with wavelengths lс1 = 
11.52 mm and lс2 = 12.25 mm. At a plate thickness of 10 mm, 
the maximum value E0 of the single-photon electric field in 
the antinode exceeds 10 V cm–1 for both modes. Therefore, 
the Rabi frequency Wс of the energy exchange between an 
individual QD formed in the mode antinode region and MC 
will exceed 10–5 eV. As shown below, this is sufficient for the 
influence of the unwanted photon escape process, which leads 
to a decrease in the measurement contrast, to be small. 
However, for the first mode, the electric field reaches its max-
imum value far from the PC centre, near the holes surround-
ing the defective region, where the formation of QD is diffi-
cult. The array of QDs located in the central region of the PC 
will efficiently interact with the   lс2 mode, since its electric 
field has a maximum of E0 » 13 V cm–1 directly at the centre 
of the defect (Fig. 3a). 

Now let us estimate the linear size dx(y) of the electric field 
antinode, defining it as the size of the region along the x(y) 
axis, at the boundaries of which the field decreases by half 
compared to the maximum value. It turned out that for this 
mode dx = 1.2 mm and dy = 3.2 mm. This means that for a PC 
with the above parameters, the Rabi frequency Wс will be 

approximately the same for each QD in a linear array with a 
small number of points, N ~ 5, and its orientation relative to 
the PC axes can be arbitrary. 

For large arrays (N ~ 30), in order to ensure the same 
value of Wс for all QDs, it is necessary to increase the size of 
the antinode region by selecting a PC of the corresponding 
geometry. We calculated the PC spectrum with a lattice period 
b = 2.6 mm, the defective region of which is formed by the 
absence of five holes along the x axis (L5 defect). The wave-
length of one of the TE modes for PC with such a defect is 
lс = 11.62 mm, i.e., close to l0. The electric field of the mode 
has an extremum at the PC centre with a maximum value of 
E0 » 14 V cm–1 and is elongated in the x axis direction; in this 
case, dx reaches 10 mm (Fig. 3b). The vertical size of the mode 
antinode is about 1.1 mm. Therefore, by orienting horizon-
tally an array of N ~ 15 QDs placed at the antinode, one can 
achieve almost the same value of Wс for each element. Thus, a 
PC with an L5 defect allows using both small linear arrays 
and arrays of a large number of QDs for detection, in contrast 
to a similar PC with an S1 defect considered above. 

How to ‘stretch’ the electric field at the antinodes if it is 
necessary to use a QD array with an even greater number of 
elements? One of the ways is to increase the horizontal size 
of the defective area by shifting along the x axis the central 
row of holes, located to the left and right of the defective 
area, by some value b0 (see Fig. 2). The value b0 = b = 2.6 mm 
corresponds to a PC with an L7 defect, and the choice of b0 
= 2b = 5.2 mm makes it possible to obtain a PC structure 
with nine missing holes in the lattice. But how much will the 
eigenfrequency of the mode and the maximum value E0 of 
the electric field at the antinode change under such a trans-
formation? To answer these questions, we calculated the 

2R b

x

y

b0

E(x, y)

Figure 2.  (Colour online) PC structure with an L5 defect with a variable 
size of the defective region (R is the hole radius, b is the lattice period, 
and b0 is the shift of the central row of holes along the x axis with re-
spect to the defective region). The array QD is located at the antinode 
of the electric field.
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spectrum and distribution of the electromagnetic field in a 
PC with an L5 defect for various values of b0. It turned out 
that, on the one hand, an increase in b0 in the range of 
0 – 5.2 mm leads to an increase in dx from 10 to 16 mm, as 
expected (Fig. 4). In this case, the mode wavelength increases 
insignificantly, up to 11.69 mm, i.e., by only 0.6 %. Thus, at  
b0 » 5 mm, the value of Wс for each QD in an array with N = 
30 will be approximately the same, and all dots are tuned to 
resonance with the PC mode. The negative effect of an 
increase in the size of the defective region is a decrease in E0, 
and hence Wс, by a factor of 1.3. This effect is shown below 
to enhance the influence of technological errors in the QD 
manufacturing and, as a result, to a decrease in the measure-
ment contrast of the device. 

4. Dependence of the coefficient of photon 
transmission through the MC on the QD array 
parameters and the position of the measured QD 

Let us consider a linear chain of one-electron QDs synthe-
sised in the antinodes of the MC mode field. To calculate the 
Coulomb energies (1), we used the approximation of a three-
dimensional rectangular well with infinitely high walls for the 
QD potential: U(r) = 0 if | | /2, | | /2, | | /2x a y a z ax y zG G G  and 
U(r) = ¥ otherwise. To eliminate the influence of the Förster 
effect on the photon transfer through the MC, we choose an 
array structure for which this interaction is compensated. 
This can be achieved if each pair of neighbouring QDs of the 
array has orthogonal p-orbitals [14]. By alternating QDs with 
px- and py-orbitals, one can significantly weaken the Förster 
energy transfer between QDs and consider only the diagonal 
components of Hamiltonian (2). Figures 5 and 6 show the 
spectra of MCs containing a linear chain of N = 10 and 30 
identical QDs with the above orbital configuration, as well as 
the QD frequency shifts, for compact (ad = 4) and sparse 
(ad = 8) chains. 

Calculations of the matrix elements (1) of the Coulomb 
interaction of QDs included in Hamiltonian (2) showed that 
the frequency shifts of the one-electron QD depend as 

G ~ ap
2/L3 on the distance L between the centres of neigh-

bouring QDs and on the effective radius ap of the excited 
orbital. If  G cH W , then the MC photon spectrum differs sig-
nificantly from the MC spectrum obtained without consider-
ing the interaction between QDs due to the presence of addi-
tional resonances in the interval between the two extreme 
Tavis – Cummings (TC) polariton peaks. This testifies to the 
transformation of the electron – photon eigenstates of the 
structure, which is due to the shift asymmetry and leads to the 
appearance of ‘light’ components in some ‘dark’ states of the 
canonical TC model. If the condition  G <<  Wc is satisfied, then 
the influence of the Coulomb effects is insignificant, and the 
spectrum is a Tavis – Cummings doublet. As the number N of 
QDs increases, there is a tendency to restore the doublet struc-
ture, accompanied by the suppression of ‘Coulomb’ resonances 
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QDs for a compact chain (ad = 4). (a) The coefficient of laser photons 
transmission through the MC and (b) the dependence of the Coulomb 
shift of the electronic transition frequency in QD on its position in the 
chain. Positive (negative) shifts correspond to the orientation of the QD 
p-orbital along (across) the chain axis.
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Figure 6.  (Colour online) Spectroscopic characteristics of a hybrid 
structure based on a single-mode MC and a linear array of 10 and 30 
QD for a sparse chain (ad = 8). The notations are the same as in Fig.5.
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in the central part of the spectrum. In addition, there is an 
increase by N  times, already known to us, in the interaction 
energy of the QD array and the MC mode (splitting of polari-
ton peaks). The first of these features is due to the enhancement 
of the interaction between the electron and photon subsystems 
with increasing N. Despite the smallness of the Rabi frequency 
Wc of an individual QD compared to the Coulomb shift of its 
frequency, the collective Rabi frequency increases and, for 

( / )N G c
2H W , overlaps the detunings associated with the shifts. 

Compensation for the Coulomb QD frequency detun-
ings, as well as the Förster energy, can be implemented by an 
appropriate choice of the QD parameters. In this case, the 
issue is choosing the QD potential depth, which would 
ensure the resonance of its electron frequency and the fre-
quency of the MC mode, taking the electron – electron inter-
action in the chain into account. This adjustment can be 
implemented by varying the chemical composition/geometry 
of the QD at the stage of fabrication of the structure or by 
superimposing the local fields of metal gate electrodes 
located near the QD. 

How will this modification of the spectrum of the struc-
ture affect its measuring properties? To answer this question, 
it is necessary to plot the dependences of the maximum con-
trast Smax (5) for structures with and without compensation 
for Coulomb shifts. Figure 7 shows the Smax for the QD chain 
interacting with the measured QD, which is located at a dis-
tance of Ly = 4 e.a.u. from its axis as a function of the longi-
tudinal coordinate Lx. When varying the position of the QD 
centre along the chain, the contrast demonstrates broad peaks 
when the distance between the measured QD and the QDs of 
the chain with the p-orbital oriented along the y axis (in our 
case, QDs with even numbers) is minimal. If the shifts are 
compensated, then the number of peaks in this dependence 
increases, and the set of Smax maxima reflects the convergence 
of the measured QD with each QD of the chain. However, 
their values turn out to be less than without compensation. 
Thus, for high-precision electron detection, it is recommended 
to place the measured QD opposite those QDs of the chain, 
whose p-orbitals are oriented towards its centre, undertaking 
no shift compensation. 

Let us study the behaviour of the function Smax depending 
on the distance Ly to the measured QD, as well as on the chain 
period ad. As can be seen from Fig. 8, with increasing Ly, the 
expected decrease in contrast is accompanied by smoothing of 
the peaks. An increase in the distance between QDs weakens 
the electron – electron interaction within the chain, which is 
equivalent to compensation for shifts. This explains the simi-
larity of the dependences in Fig. 7 at G = 0 and in Fig. 8. On 
the other hand, for a sparser chain, the contrast decreases 
faster as the measured QD moves away from it. Therefore, 
the Coulomb energy is an important resource, especially when 
measuring at a large distance to the object. 

In the course of comparing the spectroscopic dependences 
for the transmission coefficients through MC with QD chains 
of different lengths, we have already found out that an 
increase in the parameter N leads to an increase in the photon 
component against the background of the electronic subsys-
tem and to restoration of the response shape without Coulomb 
interaction. The same effect also manifests itself when the 
measured QD is added, which does not significantly affect the 
spectrum of the system at N >>  1. 

An increase in the distance between the QD and the chain, 
as well as the distance between neighbouring QDs of the 
chain, manifests itself in a faster decrease in contrast (Fig. 9). 
In this case, the measurement efficiency remains relatively 
high only for a QD located at a distance Ly = 4. Thus, it is to 
be concluded that it is unsuitable to use extended linear chains 
of identical QDs in an MC for detecting an electron in an 
external QD at a large distance from this structure. Does it 
make sense then to talk about the prospects for using QD 
arrays? Recall that the original goal of increasing the number 
of optically active objects inside the MC that respond to 
external electric fields was to suppress dissipative effects asso-
ciated with the uncontrolled escape of photons from the MC. 
In order to suppress this undesirable process, the condition  

Nc H kW  must be satisfied. In this case, the total electron 
relaxation rate Ng should also be less than this parameter. In 
our calculations, we assumed a stronger condition, Wc  >>   k, 
to be satisfied, and therefore the peaks in Figs 5 and 6 are well 
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Figure 7.  (Colour online) Dependences of the maximum value of the 
measurement contrast on the position of the tested QD along the chain 
with compensation (G = 0, solid curves) and without compensation 
(G ≠ 0, dashed curves) of the Coulomb frequency shifts of the QD chain 
at N = (a) 5 and (b) 6.
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Figure 8.  (Colour online) Dependences of the maximum value of the 
measurement contrast on the position of the tested QD along the chain 
for three distances from its centre to the axis of the chain [Ly = 3 (solid 
curves), 6 (dashed curves) and 9 (dash-dotted line)]; N = 6, and ad = (a) 
4 and (b) 5.
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distinguishable even at a small number of QDs. For the oppo-
site case ( c G kW ), as N increases, the distinguishability of the 
peaks remains even at a low quality factor of the MC. 

Having found out that the choice of N is of great impor-
tance, let us return to the study of the influence of other 
parameters of the QD chain on the measurement contrast. 
The data presented in Figs 7, 8 and 9 indicate the dependence 
of the function Smax on the distance between the QDs and on 
the frequency detuning between the QD and the MC mode. 
Due to the imperfection of the manufacturing technology of 
our structure, these values will have some random spread, 
described by a normal distribution with some standard devia-
tion s. Let us assume that the measured QD is located oppo-
site the QD chain with an excited orbital oriented along the y 
axis. This configuration corresponds to the maximum con-
trast value. The transition frequency in a QD is the most 
important parameter that determines the degree of hybridisa-
tion of the electronic and photonic subsystems, and hence the 
very possibility of using photons to obtain information about 
the QD electronic state. If it turns out to be detuned from the 
frequency of the MC mode by a value greater than the inter-
action energy, then such a QD becomes ‘dark’ and ceases to 
affect photon transport. 

The relationship between Wc and sw determines the effect 
of QD frequency fluctuations on the degree of hybridisation 
of the photonic and electronic subsystems, and hence on the 
measurement accuracy. Even at sw » 0.1Wc, the contrast 
drops by almost a factor of three compared to the structure of 
identical QDs (Fig. 10) that are in exact resonance with the 
MC mode. However, an increase in the interaction energy 
makes it possible to compensate for this undesirable effect. 
Another type of deviation is related to the inaccuracy of QD 
positioning in the chain, which again leads to uncontrolled 
Coulomb shifts of their frequencies. Obviously, the main 
source of error is the frequency shifts of those QDs that are 
closest to the measured QD. This means that its influence as a 
whole does not depend on the number of QDs in the chain. 
An increase in the standard deviation sX of QD centres from 
the prescribed values leads to a decrease in contrast, which is 
approximately the same for chains of different lengths 

(Fig.  11). The results obtained for a linear sensor structure 
indicate a monotonic decrease in contrast with increasing N, 
which is associated with a gradual decrease in the influence of 
an electron in the measured QD on nearby QD chains, and 
hence on photon transport through the MC. The consequence 
of this is the restoration of the polariton spectrum of the 
chain. In this case, the role of the Coulomb effects inside the 
chain is also levelled against the background of an increase in 
the electron-photon interaction. 

5. Conclusions 

We have discussed the possibility of using a linear array of 
semiconductor single-electron QDs located at the antinode of 
the mode of an MC based on a two-dimensional PC as a 
detector of an electron located in the outer QD. The coeffi-
cient of photon transmission through the MC and the mea-
surement contrast are calculated taking into account the 
Coulomb effects in the energy exchange between the QD and 
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Figure 9.  (Colour online) Dependences of the maximum value of the 
measurement contrast on the number of QD in the linear chain for sev-
eral positions of the measured QD [Ly = ( ) 4, ( ) 6 and ( ) 8] in the case 
of (a) compact and (b) sparse chains.
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Figure 10.  (Colour online) Dependences of the measurement contrast 
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

S
m

ax

sX

ad = 4
Lx = 4
Ly = 4

N = 6

N = 12

Figure 11.  (Colour online) Dependences of the measurement contrast 
on the standard deviation of the QD coordinate for a short chain and a 
long one. Each point is obtained by averaging over 1000 samples of 
random variables (normal distribution) for each QD chain.
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the MC mode depending on the array parameters and the 
location of the measured QD. As follows from the simulation 
results, the Coulomb effects can either increase or decrease 
the sensitivity of the array to the external field produced by 
the electron. In addition, the stability of the system response 
to fluctuations in the QD parameters caused by the imperfec-
tion of their manufacturing technology is studied. Critical 
values of deviations are indicated, above which the operation 
of the measuring device becomes inefficient. Note that the 
principle of charge detection proposed in this work allows the 
use of QD arrays of various shapes, e.g., in the form of a ring. 

Using the numerical solution of Maxwell’s equations by 
the finite-difference time-domain method, the eigenfrequen-
cies and electromagnetic field distributions in a two-dimen-
sional PC with various types of defects are calculated. The PC 
parameters are chosen such that the Rabi frequency of the 
energy exchange of the MC mode with each QD in an array 
consisting of both several elements and a large number of 
QDs is approximately the same. The possibility of increasing 
the size of the antinode region of the electromagnetic field of 
the PC mode with an L-type defect is shown if it is necessary 
to use QD arrays consisting of several tens of elements. 

The considered system has common features with an 
array of neutral atoms placed in an optical resonator [25]. 
However, there is also a significant difference because the 
structure of one-electron QDs is a charged system, while the 
collective of neutral atoms is not. This property brings the 
QD array closer to a chain of ions in a trap with a common 
phonon mode [26], as well as to a set of superconducting 
Josephson qubits in a coplanar microwave resonator [27]. All 
of them are characterised by high interaction energy and can 
be effectively controlled by external electromagnetic fields. In 
addition, an important advantage of schemes and networks 
based on QD in comparison with atomic schemes is their fea-
sibility using existing planar lithographic technologies of 
micro- and nanoelectronics. 
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