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Abstract.  This paper presents a detailed analysis of the effect of the 
optical lattice field on clock transition spectroscopy, as exemplified 
by thulium atoms. We consider the applicability of the sifting of 
atoms in an optical lattice by ramping down the power of the laser 
light that produces it. This method allows the number of filled 
vibrational sublevels to be reduced down to a single vibrational 
state, without changing the inner state of the atoms. The effective-
ness of the method is illustrated by the example of the spectroscopy 
of a clock transition in thulium atoms in the resolved sideband 
regime.

Keywords: spectroscopy, optical clock, laser cooling, optical lat-
tice, ultracold atoms, thulium.

1. Introduction

The transition of frequency standards to the optical range 
allowed a relative uncertainty and instability at a level of 10–18 
to be reached [1]. At present, optical frequency standards 
based on Al+ [2], Yb+ [3], and neutral strontium atoms [4] are 
the most accurate. Clocks based on neutral atoms in optical 
lattices demonstrate considerably better stability than do sin-
gle-ion clocks. All types of optical clocks require deep cooling 
of particles, and Doppler and sub-Doppler laser cooling met
hods allow temperatures of the order of a few microkelvins to 
be reached [5]. The next step in all state-of-the-art optical 
clocks is the transition to the so-called Lamb – Dicke regime, 
which allows the contributions of the linear Doppler and 
recoil effects to be suppressed [6]. To pass into this regime, it 
is necessary to localise atoms in the propagation direction of 
probe light on a length scale smaller than its wavelength. In 
optical clocks based on neutral atoms, magic-wavelength 
optical lattices are used for this purpose [7 – 10], in order to 
reduce the effect of the confining potential on the clock tran-
sition frequency. This method leads in a natural way to dis-
crete energy levels corresponding to vibrational states in the 
optical lattice potential. The distribution of atoms over vibra-

tional states can result in a number of effects undesirable in 
the case of precision spectroscopy. These include, for exam-
ple, Rabi oscillation decoherence [11] and the dependence of 
the clock transition frequency shift on the vibrational state, 
due to higher order polarisabilities [12]. Such problems are 
encountered in dealing with various atomic standards and 
can be solved most frequently by pumping atoms into the 
vibrational ground state using sideband cooling [12, 13]. For 
thulium atoms, this approach can be implemented using one 
of their narrow transitions, e.g., that considered by 
Provorchenko et al. [14]. However, it leads to a magnetic sub-
level population redistribution. This is critical in the case of 
thulium atoms because clock transition spectroscopy is per-
formed between states with a total momentum projection mF 
= 0 [15, 16].

In this paper, we analyse the above-mentioned Rabi oscil-
lation decoherence and clock transition frequency shift eff
ects, related to the distribution of atoms over vibrational sub-
levels. In addition, we analyse whether sifting of atoms via a 
temporary reduction in optical lattice depth can be used in 
thulium optical clocks. This method allows the number of 
filled vibrational sublevels to be reduced without changes in 
inner states of the atoms [15 – 19].

2. Interaction of atoms with an optical lattice 
and the vibrational spectrum of the transitions

In this section, interaction of atoms with monochromatic 
light is described in terms of polarisabilities. In the dipole 
approximation, the energy shift of the ith level can be written 
in the form

DEi (r , w) = – (4 ) ( ) ( )a E r
4
1

i0 0
3

0
2pe a w

	 = – ai (w) ( )c
a I r2 0
3p ,	 (1)

where ai (w) is the dynamic polarisability of the level, exp
ressed in atomic units, at the corresponding frequency; e0, a0, 
and c are the permittivity of vacuum, the Bohr radius, and the 
speed of light in vacuum, respectively; and E0 (r) and I (r) = 
(ce0 /2)|E0(r)|2 are the amplitude and intensity of light at the 
point under consideration. Thus, the spatial intensity distri-
bution determines a potential that confines atoms under cer-
tain conditions.

Hereafter, we consider a Gaussian TEM00 mode and 
standing-wave configuration. It is convenient to represent 
this configuration as a combination of two counterpropagat-
ing beams, which are thought to have equal powers in subse-
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quent formulas. The depth of the potential for the ith level 
can be represented as

U(r) = – 4 2 c
a0
3p aiIp (r),

where ai is the polarisability of the level under consideration 
and Ip (r) is the intensity of the wave propagating in the for-
ward direction. Near the beam waist, relation (1) can be writ-
ten through the maximum depth of the potential,

U0 = 
8
c
a0
3p ai I0,

expressed through the maximum intensity on the beam axis,

I0 = 
w
P2
2p

(here, w is the 1/e2 Gaussian beam radius and P is the power 
of the wave propagating in the forward direction):

U(r,z) = –U0 e
/r w2 2 2

- cos2(klatz), 	 (2)

where klat = 2p/llat = 2pnlat/c is the magnitude of the wave vec-
tor of the light that produces the optical lattice along the Z 
axis; r is the distance from the lattice axis; and z is the distance 
from the beam waist. Hereafter, we consider the potential of 
an individual standing wave cell with the z coordinate mea-
sured from the antinode position. At small distances r from 
the lattice axis, the potential can be approximated by a har-
monic one,

U h(z,r) = –U0 + 
m r
2 r

2 2w  + m z
2 z

2 2w

	 = U0 k z
w
r1 2lat

2 2

0
2
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- + +e o,	 (3)

with transverse and longitudinal vibration frequencies
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0 ,

respectively, where Erec = (hnlat /c)2/2m and nrec = Erec/h are the 
recoil energy and frequency related to scattering of optical 
lattice photons; ag is ground state polarisability; w0 is the 
beam waist radius; and m is the particle mass. The character-
istic number of vibrational levels in the approximation under 
consideration can be estimated as follows:

Nz » U0 /'wz = E
U
4 rec

0 ,

Nr » Nz
r

z
n
n .	

(4)

Here, we use the designations nr = wr /2p and nz = wz /2p. 
Taking into account further corrections in the expansion of 
(2) yields the following relations for the lattice potential and 
energy spectrum:

U(z,r) = U0 1 2 2k z
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where nz and nr are the numbers of the longitudinal and radial 
vibrational levels, respectively. If the last term in (6) is neg
lected, the energy as a function of nz can be presented in the 
form

Enz /h = nz n n n
2
1

2 2
1rec

z z z
2n

+ - + +` `j j.

Note that, if atoms are confined in an optical lattice at the 
magic wavelength, the potentials for the ground and upper 
clock levels have the same depth and vibrational spectrum. It 
is seen from (6) that taking into account the corrections causes 
the spacing between vibrational levels to decrease with inc
reasing nz and nr as

/E E h n 1recn n z z1z z n n- = - ++^ ^h h.

This dependence leads to asymmetry of profiles in the case of 
spectroscopy at sideband frequencies. Fedorova et al. [11] 
and Blatt et al. [20] obtained probability density as a function 
of probe light frequency detuning d for a transition with a 
change in the longitudinal vibrational quantum number by 
unity:
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( ) ( ) [ ] ( ) [ ]p p ptotal 1 1d d d d dH H= - +- + .

Here, pnz  corresponds to the probability of a transition from 
state nz to neighbouring vibrational states; p+1(–1) allows the 
blue (red) wing of the distribution to be described; ptotal 
describes both sidebands;

( )n 1recn z zzn n n= - +u ;

/
k T
h

rec
B

n
r

z
zc n n n

= u^ h ;

Nz is the total number of bound levels in the lattice potential, 
which can be found using numerical simulation or estimated 
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using relations (4); Tr and Tz are the temperatures corre-
sponding to distributions over transverse and longitudinal 
vibrational modes;

Z(Tz) = ( / )exp E k TBn z
n

N

0
z

z

z

-
=

/

is the partition function; and Q[x] is the Heaviside function. 
The cause of the distinction between the blue (+1) and red 
(–1) vibrational sidebands is that there is no Dnz = –1 transi-
tion for the ground vibrational sublevel. Sideband frequency 
spectra contain information about the distribution of atoms 
over vibrational sublevels and characteristic temperatures of 
such distributions. The information can be extracted by fit-
ting the spectra to relation (7), with nz, Tz, and Tr as fit param-
eters, and utilised for analysis of a number of effects described 
below. Figure 1 presents characteristic spectroscopy results 
and optical lattice parameters evaluated by fitting the spec-
trum to relation (7).

3. Clock transition frequency shift

Consider now the frequency shift of a clock transition 
between the ground and clock states, g ® c, due to interac-
tion with the optical lattice. Analysing the electric dipole 
(E1) mechanism of interaction, one can find so-called magic 
wavelengths, at which the ground and clock states have 
equal electric dipole polarisabilities, E

i
1a . At the magic wave-

lengths, the frequency shift of the transition under consider-
ation is independent of light intensity and turns out to be 
zero for atoms in all vibrational states. However, to reach 
uncertainty and instability at a level of 10–18, it is necessary 
to take into account corrections to interaction of atoms with 
light [21]: interaction by magnetic-dipole and electric-quad-
rupole mechanisms ( qm

ia ) and hyperpolarisability of atoms 
(bi ). We then obtain

U(I0,z) = –
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where me is the mass of an electron. The mechanisms under 
consideration were analysed, e. g., by Ushijima et al. [12] and 
Beloy et al. [22]. For convenience of subsequent reasoning, we 
introduce a normalised depth: u = U0/Erec. The radial vibra-
tional frequency being low compared to the lattice depth 
allows the intensity of light with which atoms interact to be 
averaged over the transverse vibrational sublevels and the fol-
lowing attenuation coefficients to be introduced,

zj » 1 – uE
jk T

rec

B r ,

which relate the powers of the maximum mormalised optical 
lattice depth to the corresponding powers of some effective 
depth ( , )u u T uj

j r
jz=r  for atoms at a particular radial tem-

perature Tr. Here, j is the exponent under consideration in the 
expansion of potential (8). Since the terms of potential (8) 
have different spatial dependences, the clock transition fre-
quency shift depends on the longitudinal vibrational state of 
the atoms, nz, which can be represented by the relation
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where dmw is the detuning of the frequency of the light that 
produces the optical lattice from the E1 magic frequency and 
the following designations of normalised polarisabilities are 
used:
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One promising magic wavelength for a clock transition in 
thulium atoms lies near 1064 nm [17]. Given below are a num-
ber of parameters essential for evaluating interaction of atoms 
with light at this wavelength – thulium atom polarisability 
characteristics [15] and recoil energy corresponding to light of 
an optical lattice at this wavelength:

Erec/Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1043
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Figure 1.  (Colour online) Spectroscopy results for a clock transition in 
the resolved sideband regime. Fitting the experimental data to relation 
( 7 ) (solid line) allows parameters of the lattice and characteristics of the 
atom distribution to be estimated. Also indicated are the longitudinal 
and transverse vibration frequencies (nz and nr), estimated temperatures 
of the distribution over the corresponding vibrational sublevels (Tz and 
Tr), average values of vibrational states (nz  and nr ), population of the 
ground longitudinal (nz = 0) vibrational level (n0), and the total number 
of vibrational states (Nmax

z  ).
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Figure 2 shows the clock transition frequency shift as a 
function of optical lattice depth at various detuning values. It 
is seen that the clock transition frequency shift varies from 
2 ́  10–17 in the case of the first vibrational level occupied (in 
comparison with atoms in the ground state) to more than 
4 ́  10–16 (at u = 100). The difference in frequency shift is quite 
appreciable, so it is necessary to accurately characterise and 
monitor the distribution of atoms over vibrational levels. As 
shown by Ushijima et al. [12], this effect can be used to deter-
mine high-order polarisability coefficients. In Section 5, we 
consider the method we use to remove atoms from high vibra-
tional levels.

4. Dependence of the Rabi frequency  
on the vibrational state of atoms

The atom population distribution over vibrational sublevels 
leads as well to Rabi frequency nonuniformity when a clock 
light pulse is applied [11, 20]. In the Lamb–Dicke regime with 
a localisation parameter

/rec
clock

z z
2h n n= ,

where

/h mc2rec
clock

clock
2 2n n=

is the recoil frequency corresponding to clock light scattering, 
the Rabi frequency for a transition with no change in the 
vibrational state depends on the quantum number nz as

( / ) ( )exp L2n z n z0
2 2

z zh hW W= - ,	 (11)

where W0 is the Rabi frequency for a free atom and ( )L xnz  is a 
Laguerre polynomial. Here, we neglect the dependence of the 

Rabi frequency on the radial quantum number because we 
assume that there is rather good alignment of the probe clock 
light and the light that produces the optical lattice (better 
than 10–3 rad [10]). The shifts due to higher order polarisabil-
ities are here also left out of account because they are small 
compared to the Rabi frequency characteristic of our experi-
ment: of the order of 1 kHz. Thus, atoms at each particular 
vibrational sublevel, nz, will undergo Rabi oscillations of their 
upper level population at different frequencies:

( ) ( )sinp t te
n n

2
z zW= .

The experimentally observed total population of the upper 
level, with allowance for spontaneous decay [23] with an 
inverse lifetime G = 2p ́  1.4 s–1 [24, 25] (which is, however, 
unimportant in our case), can be expressed through sublevel 
populations nzr  ~ ( / )exp E k TBn zz-  as
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1 2

4
3e n
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r
W G= - -

=

=

` j8 B/ .	 (12)

Rabi oscillations typical of thulium atoms after optical 
pumping are shown in Fig. 3. By fitting to relation (12), we 
were able to estimate the average population of vibrational 
levels, nz  = 8.0(0.2), and the Lamb – Dicke parameter, hz = 
0.14. The red dotted line represents Rabi oscillations in the 
case where only the vibrational ground state is populated. For 
a more detailed analysis of the atom sifting method proposed 
below, it is of interest to pay attention to Rabi oscillations at 
the same average vibrational quantum number nz  = 4.1 but 
different population distributions over vibrational levels. The 
violet dashed line corresponds to a distribution at constant 
temperature Tz and empty levels with n ³ 10, and the green 
dot-dashed line represents the Boltzmann distribution over 
all accessible vibrational states with reduced Tzu  = Tz /4. It is 
seen that, in the latter case, oscillations decay considerably 
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Figure 2.  (Colour online) ( a ) Clock transition frequency ( p) shift as a function of optical lattice depth for the vibrational ground level at various 
detuning values dmw (red lines) and for atoms distributed over the first two vibrational sublevels according to the characteristics indicated in Fig. 1 
(blue dot-dashed line). ( b ) Frequency shift as a function of lattice depth at various values of the maximum number of occupied levels in the case of 
20 accessible levels. The detuning from the E1 magic wavelength is  d = –2 GHz. The red lines in panel b are analogous to those in panel a.
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more slowly. Whereas the curves are essentially identical 
at short times, the difference between them is appreciable 
at  long times. Therefore, the two cases under consideration 
can theoretically be distinguished from the shape of Rabi 
oscillations.

From the viewpoint of operation of an optical clock, the 
population distribution over a large number of vibrational 
levels leads to a reduction in the maximum achievable frac-
tion of excited atoms and, as a consequence, a reduction in 
the slope of the error signal.

5. Sifting of atoms

The laser cooling methods we use imply spontaneous decay to 
the ground state. After optical pumping to the mF = 0 sub-
level, they cannot be used because depolarisation of atoms 
will occur. However, it is the preparation of initial states 
which makes the major contribution to heating of atoms. This 
causes a number of undesirable effects, considered above. To 
resolve this issue, we propose that the optical lattice potential 
be temporarily ramped down by reducing the number of 
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Figure 4.  (Colour online) ( a ) Schematic illustrating the formation of an optical lattice and ( b ) pulse diagram of the experiment. A fibre laser beam 
is sent to an acousto-optic modulator (AOM), which allows the power of the light that produces an optical lattice to be varied. The first order dif-
fracted beam is then launched into an enhancement cavity, whose length is stabilised by the Hänsch – Couillaud method using photodiodes PD1 and 
PD2; PD3 is used to measure the power of the light circulating in the cavity, with allowance for the transmittance of the output coupler.
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bound states, which will lead to a reduction in the number of 
filled vibrational levels during clock transition spectroscopy, 
without disturbing the distribution of atoms over magnetic 
sublevels. In experiments, this can be brought about using an 
acousto-optic modulator to reduce the power of the light that 
produces the optical lattice (Fig. 4a). Figure 4b shows a char-
acteristic time dependence of this power.

In an experimental setup, a lattice is produced using light 
from an Azurlight ALS-10W1064 fibre laser at a wavelength 
of 1064 nm. The light passes through an acousto-optic modu-
lator, and then the first order diffracted beam enters a vac-
uum chamber. To increase the maximum attainable depth of 
the potential and improve the efficiency of atom recapture 
from a magneto-optical trap, an enhancement cavity is used 
[26]. In addition, it allows one to monitor geometric beam 
parameters necessary for calculations of intensity, the corre-
sponding depth of the potential, and longitudinal and trans-
verse vibrational frequencies. The cavity length is stabilised to 
the light wavelength by the Hänsch – Couillaud method, and 
the TEM00 mode waist radius is 120 mm.

In the course of experiments, capture of atoms in the mag-
neto-optical trap, recapture in the optical lattice, and optical 
pumping are performed at the maximum depth of the poten-
tial, approximately 516Erec, which corresponds to a longitudi-

nal vibrational frequency of 47.4(2) kHz. The maximum con-
centration of atoms recaptured in the optical lattice at these 
parameters does not exceed 1010 cm–3. The atoms are then 
held at the quasi-two-dimensional standing wave antinodes, 
with a characteristic size llat /2. After the above processes, the 
optical power of the lattice is adiabatically reduced (Fig. 4b). 
Clock transition spectroscopy is then conducted at some final 
power necessary in the experiment, and states are read out 
again at the maximum lattice depth (Fig. 4b).

The experimental setup we use allows for variations in 
optical lattice power between different clock transition spec-
troscopy cycles, which makes it possible to study spectra of 
vibrational sublevels at various atom distributions and also 
transition frequency shifts induced by interaction with the 
light of the lattice. The clock transition is excited by a high-
power laser pulse at a wavelength of 1.14 mm, following which 
the populations of various states of atoms are read out as 
described elsewhere [15], which allows the excitation proba-
bility to be calculated. The upper panels in Fig. 5 present mea-
surement results obtained before and after sifting, and the 
lower panels present simulation results for bound states in the 
lattice potential.

First of all, attention should be paid to the fact that the 
maximum excitation probability is the same in all our experi-
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Figure 5.  (Colour online) Sifting of atoms in an optical lattice via a temporary reduction in the depth of the confining potential from 516Erec to 
129Erec. Upper panels: experimentally measured vibrational sideband spectra before (left panel) and after (right panel) sifting (circles) and fitting of 
the experimental data to relation ( 7 ) (solid lines), with characteristic distribution parameters indicated for each experiment. Lower panels: simula-
tion results for levels and their populations in the optical lattice potential [spatial distribution of the potential along the axis (black lines)] and il-
lustration of wave functions at the corresponding eigenenergies in units of the recoil energy (coloured lines: their brightness represents the popula-
tion of the corresponding level). The eigenenergies and wave functions at the potential of an isolated antinode of the optical lattice with the corre-
sponding depth were found numerically.
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ments, which corresponds to a constant relative population of 
the central magnetic sublevel. Using relation (7) and the 
above spectra, we estimated the corresponding tempera-
tures of atoms and the average number of filled vibrational 
sublevels. In calculating the distribution over vibrational 
levels after sifting, we used both a thermodynamic distribu-
tion of atoms and a ‘truncated’ distribution, in which atoms 
were not thermalised after sifting and the number of filled 
sublevels was determined by the minimum depth of the 
potential during sifting. At the sifting depth in question, a 
large number of levels turn out to be filled in both cases, and 
the only distinction is in the population of slightly filled upper 
states. They cannot be distinguished numerically, so a deeper 
sifting is needed, to a level below 10 % of the initial potential. 
In all the cases under consideration, the average number of 
populated vibrational sublevels along both longitudinal and 
transverse coordinates was found to decrease.

It is also important to pay attention to the fact that the 
number of atoms is determined by the minimum depth of the 
potential during the sifting process. This allows one to obtain 
the same number of atoms at different final optical lattice 
powers, which significantly facilitates analysis of results of 
experiments in which it is necessary to vary the lattice power, 
e. g. experiments in which the magic wavelength is sought [17].

The minimum sifting depth in the experiment was of the 
order of 25 % of the initial one, which corresponded to a 6-W 
power of the beam propagating in the forward direction 
(Fig.  4), which corresponds, according to calculations, to a 
factor of 2 decrease in the number of bound states in the lat-
tice potential. The minimum sifting depth in the experiment 
was determined by specific features of enhancement cavity 
stabilisation: with decreasing optical power, the amplitude of 
the error signal drops, which makes it impossible to stabilise 
the cavity length without changing parameters of the PID 
controller. To resolve this issue, a specialised scheme is being 
developed, with the possibility of automatically correcting 
parameters of the PID controller during experiments. Acc
ording to estimates, ‘cooling’ to the vibrational ground state 
requires that the potential be ramped down to a level of one 
hundredth of the maximum potential considered in this study. 
This will lead to a loss of about 83 % of the trapped atoms, 
without however preventing measurements. To deplete the 
levels with nz > 1 (Fig. 2a), the sifting depth should be 2 % of 
the initial one.

6. Conclusions

Analysis of interaction of thulium atoms with the optical lat-
tice field has shown that it is necessary to cool the atoms to 
their vibrational ground state. This condition should be met 
for assessing higher order polarisabilities and characterising 
shifts and uncertainties in evaluation of the clock transition 
frequency at a level of 10–18. In this work, we have demon-
strated experimental applicability of the sifting method for 
removing atoms from high vibrational levels without chang-
ing the distribution of the atoms over magnetic sublevels. At 
initial parameters, of the order of 17 % of the trapped atoms 
are in the vibrational ground state after optical pumping, 
which is sufficient for clock transition spectroscopy. This 
method makes it possible to reduce the number of populated 
vibrational levels to unity at a rather large decrease in the 
depth of the confining potential. For this purpose, however, a 
specialised enhancement cavity stabilisation scheme is needed, 

capable of operating in a wide range of input optical powers. 
For a more detailed analysis of the distribution of atoms over 
vibrational sublevels, we plan to use the dependence of the 
characteristic time of Rabi oscillation decoherence on the 
nature of the distribution.
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