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Abstract.  The cooling mechanisms of a Fermionic strontium-87 gas 
are refined in order to study its evolution under a non-Abelian 
gauge field. Significant attention is paid to the effect of the finite 
temperature of the gas on the process in question. The efficiency of 
the loading of atoms in a cross-dipole trap is described in detail, the 
quantitative performance of the evaporative cooling is calculated, 
and a degenerate Fermi gas is characterised using a Thomas – Fermi 
distribution.

Keywords: ultracold Fermionic gas, cross-dipole trap, finite tem-
perature of gas, non-Abelian gauge filed.

1. Introduction

Gauge fields are essential ingredients of modern theories in 
physics [1]. A transition from the well-known Abelian gauge 
field U [see Eqn (1)] of quantum electrodynamics [2] to the 
matrix valued non-Abelian gauge field has led to the under-
standing of electroweak interaction [3 – 5], and quantum 
chromodynamics [6]. With the advent of quantum simulation 
using ultracold atomic gases, it has now been possible to 
mimic different model-Hamiltonians from high-energy phys-
ics, condensed matter physics, and astronomy [7 – 13].

One particular thing that is common to all experiments on 
quantum simulation of relativistic phenomena is the competi-
tion between two specific parts of the Hamiltonian, namely 
the kinetic energy with a quadratic dependence of momentum 
that has a dispersion proportional to the square-root of the 

temperature, and the other term arising from atom – light 
interaction that emulates the desired effect [14 – 17]. Therefore 
it is imperative to lower the temperature such that the kinetic 
energy part of the Hamiltonian becomes sub-dominant, while 
the term responsible for the atom – light interaction becomes 
dominant [16 – 18].

In this paper, we focus on the realisation of one specific 
Hamiltonian

H
m m
p p A

2

2 2

= -t
t t t

, 	 (1)

where pt  is the momentum operator, m is the atomic mass, 
and At    is the gauge field that is a linear combination of 
Pauli matrices [18, 19]. In our experiment, different com-
ponents of At    are non-commuting, while the underlying 
gauge field is non-Abelian. The second term of the 
Hamiltonian in Eqn (1) arises from light – matter interac-
tion, and is proportional to the single photon recoil 
momentum of the atom [19]. Therefore, to observe the phe-
nomena that arises entirely due to the second term, we need 
to lower the temperature so that the kinetic energy disper-
sion becomes sub-recoil. The aim of this present paper is to 
provide details on the cooling process that has led us to 
simulate the Hamiltonian in Eqn (1), as reported in Ref. 
[18]. Moreover, the behaviour of the damping motion of 
the dynamics as a direct consequence of the weak but finite 
momentum dispersion of the gas is described in detail.

2. Cooling of strontium-87 to degeneracy

The cooling of the strontium-87 atoms in our experiment con-
sists of two major steps, namely laser cooling and evaporative 
cooling. The laser cooling mechanisms have already been 
elaborated in Refs [20 – 22]. Therefore, we describe thor-
oughly only the evaporative cooling that allows one to achieve 
a degenerate Fermi gas below the single photon recoil energy.

After performing laser cooling in a magneto-optical trap 
(MOT), about 3 ´ 106 atoms at a temperature of about 6 mK 
are loaded in a cross-dipole trap with a trap depth of U ~ 
85 mK. The two focused beams (waist 65 mm) propagate in the 
horizontal plane, and cross at an angle of 70°. Their powers 
are controlled by acousto-optic modulators set with a 40 MHz 
frequency difference to average the interference effect. The 
wavelength of the dipole beams is 1064 nm, i.e., it is far red-
detuned from the principal resonances of the strontium atom. 
Therefore this off-resonant dipole trap can be used to trap 
atoms in their ground state at high-intensity regions of the 
beams for a long time in a high vacuum environment (~50 s in 
our case) [23].
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After loading the dipole trap, the beam powers are main-
tained maximal for 3 s for the atoms at the wings of the each 
Gaussian beams to leave the trap. To characterise the loading 
efficiency, we quantify the number of loaded atoms and the 
equilibrium temperature for different values of trap depths, as 
shown in Fig. 1. One can see that the number of atoms 
increases linearly along with a linear increase in temperature, 
and when the trap depth U increases by 1 mK, we load about 
~4.3 ´ 104 more atoms into the dipole trap at the expense of 
an increased temperature by 100 nK. The number of atoms in 
the last stage of laser cooling is about 15 ´ 106. Therefore at a 
maximum trap depth, around 15 % of the atoms are trans-
ferred into the dipole trap.

After thermalisation, we perform optical pumping to 
transfer all the atoms with positive mF values of the Fg = 9/2 
ground states to the |Fg = 9/2, mF = 9/2ñ state, while the atoms 
with negative mF values remain intact providing thermalisa-
tion during the evaporative cooling.

Our scheme for evaporative cooling is composed of three 
stages (Fig. 2a). Stage 1 is the idle evaporation lasting for 3 s. 
After that the power of both beams starts decreasing accord-
ing to the dependences shown by blue and red curves. This is 
stage 2 of the evaporative cooling, which lasts for 2.22 s, till 
the power of one of the beams reaches a value that is slightly 
above the power necessary to hold the entire cloud against 
gravity (dashed black line Pgravity). At stage 3, the power of 
one of the beams is held fixed, while the power of the other 
beam continues to lower, which leads to a decrease in the trap 
depth. Stage 3 terminates in 5.5 s. At stage 3, the power of 
only one beam is decreases and, therefore, we call this stage 
2D evaporation, in contrast to 3D evaporation at stage 2 
where the trap depth is lowered in the three spatial directions.

To quantify the full trajectory of evaporation, we measure 
the number of atoms N and the corresponding temperature T 
at different moments of time during evaporation, as shown in 
Fig. 2b. One can see that the temperature continues to drop, 
accompanied by atom losses due to evaporation.

To quantify the efficiency of the evaporation, we consider 
two particular metrics:

1. The quantity ∂Log N/∂Log T is the slope that estimates 
the efficiency of evaporation. When this quantity is smaller 
than the dimensionality D of evaporation, it implies efficient 
evaporation, namely a net increase in the phase-space density 
[24].

2. The quantity T/TF where TF is the Fermi temperature 
of the gas; a smaller value below unity implies a gas approach-
ing a degenerate state.

Figure 3a shows that during stage 2, evaporation is 
extremely efficient as the slope 0.48 in the log – log scale is 
much smaller than the dimensionality D = 3. However, the 
efficiency drops during stage 3. Nevertheless, the slope 1.1 is 
still larger than the dimensionality D = 2. A decrease in effi-
ciency during the later stage of evaporation is expected for a 
fermionic species since the Pauli exclusion principle inhibits 
the collisions among the atoms with same internal state, when 
the gas enters into the degenerate regime. The Pauli blockade 
is also manifested in the right panel of Fig. 3b near the end of 
stage 3, via the flattening of T/TF.

At the end of evaporation, we are left with a gas of 3.7 ´ 
104 atoms in the |Fg = 9/2, mF = 9/2ñ state at a temperature of 

dT/dU = 0.1

dN/dU = 4.3 ´ 104/mK
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Figure 1.  (Colour online) Number of atoms loaded into the dipole trap 
(red dots) and the temperature of the gas (blue dots) as a function of the 
maximum trap depth U. The solid lines are linear fits. The mentioned 
trap depth is determined for the ground state 1S0 and is estimated theo-
retically from the measured power of the beams [23].

Stage 1 Stage 2 Stage 3

0
0

1

2

3

4

5

P
o

w
er

/W
 

Pgravity

–3 2.22 5.5
Evaporation time/s

Evaporation time/s
10410–8

10–7

10–6

10–5

105

106

0 2 4 6

T
em

p
er

at
u

re
/K

N
u

m
b

er
 o

f 
at

o
m

s

a

b

Figure 2.  (Colour online) Dependences of (a) the powers of two focused 
beams composing a dipole trap, as well as of (b) the temperature (blue 
dots) and the number of atoms (red dots) on the evaporation time. 
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~30 nK with T/TF = 0.21. In order to extract the relevant 
thermodynamic quantities of the gas, we fit the momentum 
distribution of the gas with Thomas – Fermi distribution 
(see [16] for detail). Figure 4a shows a nondegenerate gas 
at T/TF = 3.1, in which the momentum distribution of the 
gas is well described by the Gaussian function capturing a 
classical Maxwell – Boltzmann distribution. Note that at 
large T/TF the Thomas – Fermi distribution reduces to a 
Maxwell – Boltzmann momentum distribution [16, 25]. In 
contrast, a degenerate Fermi gas deviates from the 
Maxwell – Boltzmann distribution, as shown in Fig. 4b at T/
TF = 0.21. An essential feature of the degeneracy is the over-
shoot of the Maxwell – Boltzmann momentum distribution, 
seen via the integrated optical density along each axis in 
Fig. 4b.

After evaporation, the atoms are either in the |Fg = 9/2, 
mF = 9/2ñ state or in the |Fg = 9/2, mF < 0ñ state. The atoms 
with mF < 0 are necessary to thermalise the atoms with mF = 
9/2 during evaporation, but remain spectators in our experi-
ment with the gauge field. In preparing a cold gas with a 
temperature of 40 – 50 nK, we turn on the appropriate laser 
beams to create an artificial non-Abelian gauge field for 
atoms with mF = 9/2 only and observe the evolution of the 
ultracold gas in the gauge field, as described in the following 
section.

3. Evolution in a two-dimension  
non-Abelian gauge field

We realise a 2D non-Abelian gauge field, where the governing 
Hamiltonian is given by Eqn (1). With the explicit form of the 
realised gauge field  At , the matrix Hamiltonian has the form
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where p ,x yt  are the two components of the momentum opera-
tor, and k is the wave number of the laser beams that produce 
the artificial gauge field. The Hamiltonian is expressed in the 
so-called dark-state basis of a tripod scheme [18, 19, 26]. The 
latter consists of three ground states |Fg = 9/2, mF = 5/2ñ º 
|5/2ñg, and  |Fg = 9/2, mF = 7/2ñ º |7/2ñg, |Fg = 9/2, mF = 9/2ñ º 
|9/2ñg, optically coupled to a unique excited state |Fe = 9/2, 
mF = 7/2ñ º |7/2ñe, as depicted in Fig. 5. The two dark states, 
extracted from the dressed state picture, are degenerated and 
read,

|
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Figure 3.  (Colour online) Temperature dependences of (a) the number 
and (b) degeneracy parameter in the course of evaporation. The solid 
red curves are linear fits of the experimental data.
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Figure 4.  (Colour online) Spatial distributions of atoms in the thermal 
equilibrium at T/TF = (a) 3.1 and (b) 0.21 after 13 ms of time-of-flight. 
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if the Rabi frequencies of the tripod beams are the same 
(210 kHz in our experiment). Note that these states do not 
contain the excited state and are thus immune to decoherence 
by spontaneous emission processes. On the contrary, two 
other states that complete the basis are called bright states 
because they contain the excited state. Fortunately, they can 

be energetically decoupled to the dark states (adiabatic 
approximation). We performed our experiment under this 
regime, namely in the dark state manifold as discussed in Refs 
[18, 27].

To transfer the atoms from the |9/2ñg state to the dark 
state, we turn on the two beams with polarisations s+ and p 
shown in Fig. 5. After 1 ms, the beam with the polarisation – 
that acts on the atoms in the |9/2ñg state is turned on. This 
scheme makes it possible to populate the dark state |D2ñ 
described by Eqn (4).

After preparing the ultracold gas in the dark-state |D2ñ, we 
observed its dynamics at different mean momenta P with a 
magnitude P0 at an angle Q with respect to the x axis, shown 
in Fig. 6. Using fluorescence imaging, we measured the popu-
lation PmF  in the ground states mF. Afterwards, we converted 
the populations to the velocities along x and y axes using the 
relations [18]:

ux = –ur(2P5/2 + P7/2),

uy = –ux(P7/2),	
(5)

where ur = /k m'  is the single photon recoil velocity.
As shown in Fig. 6, the velocity oscillation depends 

strongly on the mean momentum of the atoms along with the 
angle Q. The amplitudes of the velocity components as func-
tion of Q are shown in Fig. 7 for a fixed value of P0. One can 
see that the velocity amplitudes along each axis vary strongly 
as a function of Q for a fixed value of P0 = 4 2  given in the 
recoil momentum units. The expression of the velocity com-
ponents at finite temperature T has the form [18]
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Figure 5.  (Colour online) Excitation of an atom according to the 
scheme of the internal tripod, which is resonantly coupled with two 
counter-propagating laser beams along the x axis with polarisations s+ 
and s–, and a third beam with p polarisation along the y axis (red ar-
rows). A magnetic field B = 67 G along the axis makes it posible to 
isolate the tripod within the Fg = 9/2 ® Fe = 9/2 hyperfine transition of 
the intercombination line.

P7/2

P9/2

P5/2

ux

uy

0
0

–0.5

–1.0

–1.5
10 50 100 150 200

V
el

o
ci

ty
/u

r

0

–0.5

–1.0

–1.5

V
el

o
ci

ty
/u

r

20

40

60

80

100

P
o

p
u

la
ti

o
n

 (
%

)

0

20

40

60

80

100

P
o

p
u

la
ti

o
n

 (
%

)

Cooling time in the gauge field/ms

10 50 100 150 200

Cooling time in the gauge field/ms

a b

c d

P0 = 4Ö2, Q = 0.60pP0 = 0

Figure 6.  (Colour online) Time dependences of the population and recoil velocity projection at different values of the magnitude of momenta and 
angles for (a, b) the population PmF

 of the three atomic ground states and (c, d) the velocity components. The dots are the values extracted from 
experiments, and the solid curves are the numerical calculation using Heisenberg equation of motion without free fitting parameters [18].



	 M. Hasan, Ch.S. Madasu, K.D. Rathod, C.C. Kwong, D. Wilkowski536

ux (P0, Q ; t) » ux1 + ux0 cos(wt)exp [–(t/t)2],

uy (P0, Q ; t) » uy1 + uy0 cos(wt)exp [–(t/t)2],
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where the momentum distribution of the gas is approximated 
by a Maxwell – Boltzmann distribution. The offset and the 
amplitude of each velocity component are expressed as:

[ ( )]

( ) ( )

cos

sin cos
m
k

4 2 2

2 2 5
x1

'u
Q

Q Q
=

+

- -
,

( )

( / )

cos

sin sin
m
k

2

1
2 2

4
x0

' p
u

Q
Q Q

=
+

-
; 	

(7)

[ ( )]

( ) ( )

cos

sin cos
m
k

12 2 2

3 2 5 2 7
y1

'u
Q

Q Q
=

+

- -
,	

( )

( / )

cos

cos sin
m
k

2

1
2 2

4
y0

' p
u

Q
Q Q

=
+

-
.

The frequency of the velocity oscillation w in Eqn (6) 
depends both on the magnitude and the slope of the vector P, 
while the velocity amplitudes (7) depend only on the angle Q. 
This dependence leads to the anisotropic behaviour observed 
in the experiment. Note that both velocity components vanish 
at Q = p/4 and 5p/4. At these angles, the dark state |D2ñ, which 
is the initial state for all the experiments, is an eigenstate of 
the Hamiltonian, and leads to the suppression of the oscilla-
tion [18].

The anisotropy of the damping time t of the velocity oscil-
lation is shown in Fig. 8. One can see that the damping time t 
(orange circles) depends on the direction of the mean momen-
tum imparted to the atoms. The solid blue curve is the theory 
prediction of t from Eqn (5), where we have used a 
Maxwell – Boltzmann velocity distribution. Note that 
although the theory captures the trend of the experimental 
data, the estimation from theory generally overestimates the 
damping time measured in the experiment. We also performed 
a simulation of the dynamic of the gas using the Hamiltonian 

(see Eqn 1) in the Heisenberg approach. We then fitted the 
damping of the oscillation using an exponential decay. With a 
Maxwell – Boltzmann distribution (black stars), the fitted 
decay time is in perfect agreement with the theory prediction 
from Eqn (5).

We also take into account the role of the Fermi statistic, 
with decays obtained for T/TF = 0.3 (T/TF = 0.2) correspond-
ing to the red squares (green diamonds). The reduction of the 
damping time with a Fermi – Dirac distribution can be simply 
understood by a reduction of the low momentum population 
with respect to the Maxwell – Boltzmann distribution.

.

4. Conclusions

We have studied the loading of atoms in a cross-dipole trap 
and their evaporative cooling to reach a degenerate state at 
T/TF = 0.21. The evaporative cooling of the atoms with 
proper characterisation of the efficiency is described in detail. 
This cold gas is used further to observe the anisotropic zit-
terbewegung dynamics of the ultracold in a 2D non-Abelian 
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gauge field. The role of Fermi degeneracy is emphasised to 
understand extra damping of the velocity dynamics.
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