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Abstract.  The physical processes that form the spectra of saturated 
absorption resonances at atomic transitions between energy levels 
with angular momenta J = 1/2 and J = 1 in the field of two unidirec-
tional linearly polarised laser waves are studied analytically and 
numerically. It is shown that the specific features of the resonance 
spectra are formed in the L-schemes of transitions and manifest 
themselves in the form of narrow coherent structures – dips due to 
the magnetic coherence (optical orientation) of the transition levels 
induced by the optical fields. In this case, the energy levels of the 
lower state make the main contribution, and the contribution of the 
transfer of magnetic coherence from the sublevels of the upper state 
to the lower ones in the resonance amplitude manifests itself as an 
additive. Conditions are found under which the nonlinear resonance 
is exclusively coherent. The effect of the saturating wave field on 
the shape of coherent resonance structures is studied. 

Keywords: saturated absorption resonance, unidirectional waves, 
closed and open transitions, magnetic coherence of energy levels.

1. Introduction

Studies of nonlinear spectroscopic effects under the resonant 
interaction of several light fields with degenerate atomic tran-
sitions have been carried out for a long time. Interest in tran-
sitions induced by radiation was indicated as early as in the 
works of A. Einstein (1916) and S.I. Vavilov (1918). They 
both considered incoherent broadband radiation that changes 
the level populations. Now the saturation effect, as a rule, 
always accompanies spectroscopic studies using laser radia-
tion. Note that the appearance of coherence of atomic states 
in two-photon transitions was also first discovered in the pre-
laser era using a source of incoherent radiation [1]. With the 
advent of lasers, the field of study of such coherent phenom-
ena expanded considerably by 1972 (see, e.g., review [2]) and 
continues to grow. Interest in the topic is supported by an 
increase in the number of experimental techniques, including 
such complex ones as the study of cold atoms. Subsequently, 
the resonances due to the coherence of atomic states in the 
presence of laser radiation were called electromagnetically 

induced transparency (EIT) and electromagnetically induced 
absorption (EIA) resonances. Having arisen in the process of 
studying nonlinear optical phenomena under the interaction 
of laser radiation with gaseous media, the scope of these 
effects has extended to many other systems, the practical 
applications of which are expected. However, here, too, the 
need to obtain accurate analytical solutions and interpret the 
observed phenomena is associated with nonlinear spectros-
copy of gaseous media and has stimulated work in this area, 
including numerical simulation of experiments as a method 
that makes it possible to study situations that are not always 
achievable experimentally. Many of the phenomena discov-
ered in the 1970s were ‘rediscovered’ and renamed in papers 
on EIT and EIA. We drew attention to this, as well as to mis-
conceptions in the interpretation of a number of results 
obtained at that time, in the Introduction to Ref. [3]. 

An important example of coherent phenomena in transi-
tions from the ground state of alkali metal atoms are EIT 
resonances [4], which are based on the phenomenon of coher-
ent population trapping (CPT) [5], as well as resonances of 
the opposite sign – the EIA resonances, first found in Ref. [6]. 
The appearance of these EIA resonances was explained in 
Ref. [7] by the effect of spontaneous transfer of the magnetic 
coherence (MC) of the excited state atomic levels to the 
ground state, for which the regularities of manifestation in 
saturated absorption spectroscopy were first considered in 
Ref. [8]. However, the anomalies of EIA resonances recorded 
later in the experiments [9, 10] could not be explained within 
the framework of the mechanism of Ref. [7]. In this regard, to 
explain these effects, other processes, such as optical pumping 
and CPT [9], collisions [11], which seemingly resemble experi-
mental resonance structures, were considered, and not always 
justifiably, as well. Nevertheless, in Ref. [12], developing the 
concept [7], it was stated that the main mechanism for the 
formation of EIA resonances in closed transitions with any 
value of the total angular momenta of the levels is precisely 
the spontaneous transfer of the MC from the sublevels of the 
upper state to those of the lower state. However, later our 
studies showed that in the formation of structures of nonlin-
ear resonances, including EIA resonances, both in simple and 
in degenerate transitions (between energy levels with angular 
momenta J = 1, 2), the spontaneous transfer of the MC of the 
upper state levels is not of the primary importance. 

For example, it was shown in Ref. [13] that in a system of 
two nondegenerate energy levels, the narrow structure of a 
nonlinear resonance in the field of two unidirectional waves 
coupled to an open transition manifests itself as an EIT reso-
nance, and in a closed transition, as an EIA resonance. The 
reason for the appearance of these structures is the coherent 
beats of the populations of the transition levels in a double-
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frequency field [14, 15]. In the case of transitions between 
energy levels with J = 1, as established in Ref. [16], narrow 
structures of saturated absorption resonances are formed in L 
schemes of transitions and, for parallel polarisations of the 
fields, are determined by coherent beats of the energy level 
populations [13], whereas for orthogonal polarisations, they 
are determined by the nonlinear interference effect (NIEF) 
[14]. In this case, even when the upper state is closed, two-
level transitions between magnetic sublevels turn out to be 
open, which, according to Ref. [13], gives rise to a narrow 
structure in the form of an EIT resonance. The effect of mag-
netic coherence of levels forms EIT and EIA resonances in 
magnetic scanning spectra. In this case, the main contribution 
is made by the MC of the lower state energy levels, while the 
contribution of the spontaneous transfer of the MC from the 
levels of the upper state to the lower state, postulated in 
Refs  [10, 12] as the major one, is small and manifests itself 
only as an additive. The results of Ref. [16] are also valid for  
J ® J and J ® J – 1 transitions, since in these transitions the 
spectra of nonlinear resonances are also formed in open L 
configurations. 

A different situation arises for transitions of the J ® J + 1 
type [17, 18], where, due to the difference in the oscillator 
strengths of transitions between magnetic sublevels, the non-
linear resonance spectrum is mainly due to sublevels with the 
maximum magnetic number M forming V diagrams of transi-
tions. Exactly in V diagrams, closed two-level transitions are 
realised, in which the form of narrow resonance structures 
radically depends on the degree of openness of the atomic 
transition [13]. The effect of spontaneous transfer of the MC 
of the levels for transitions of this type also does not affect the 
qualitative form of the narrow resonance structure. In this 
case, it was found that a change in the intensity of the probe 
field could change the type of narrow resonance (from EIT to 
EIA and vice versa) [17]. 

Note that the main features of the nonlinear resonance 
formation in the resonant interaction of a double-frequency 
field with degenerate atomic transitions [16 – 18] were found 
by solving the problem numerically, since the analytical solu-
tions for transitions between levels with angular momenta 
J > 1 are complicated and difficult to analyse. In this regard, 
of interest are the simplest degenerate transitions (between 
levels with angular momenta J = 1/2 and J = 1), for which 
analytical solutions are possible. These solutions allow one to 
establish quantitative relationships between the processes 
that form the resonance spectrum of saturated absorption in 
the probe field method, including the contributions of the 
MC induced by the optical fields and its transfer from the 
upper state to the lower one. The obtained relations are 
important for determining the contributions of these pro-
cesses in atomic systems of higher complexity, including for 
clarifying the mechanism of the EIA resonance formation in 
Ref. [6]. 

2. Probe field absorption spectrum in a system 
of degenerate levels with total electron angular 
momenta J = 1/2 and J = 1 

Let us consider a problem of the probe field absorption spec-
trum in atomic transitions between the energy levels with the 
total angular momenta J = 1/2 and J = 1 in the presence of a 
strong radiation field. The diagrams of levels and transitions 
are shown in Figs 1 and 2. The strong wave is assumed to be 

plane monochromatic, linearly polarised (frequency w, wave 
vector k, electric field strength E) and resonant to the atomic 
transition m – n (transition frequency wmn). The probe wave is 
also monochromatic (frequency wm, wave vector km, electric 
field strength Em), polarised orthogonally to the polarisation 
of the strong field, not weak, and directed along the propaga-
tion direction of the strong wave. The gas is assumed to be 
rarefied enough to neglect collisions. 

When solving the problem, we will proceed from the 
kinetic equations for the density matrix of the atomic system 
within the model of relaxation constants [14]. In this case, the 
dynamics of diagonal ( ri = rii) and off-diagonal ( rik) ele-
ments of the density matrix is determined by the system of 
equations:
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where d/dt = ∂/∂t + uÑ is the total derivative operator; u is the 
atomic velocity vector; Гi are the relaxation constants of the 
energy levels; Гik are the coherence relaxation constants for 
allowed (Гik = Г ) and forbidden (Гik = Гm, Гn) transitions 
between magnetic sublevels of the states m and n; Qi are the 
excitation rates of these sublevels, which determine their pop-
ulations in the absence of light fields (in the case of the ground 
state, Гn is determined by the average flight time in the 
atom – field interaction region); V = – Gexp[i(kr – wt)] – 
G mexp[i(kmr – wmt)] + h. с. is the operator of the atom interac-
tion with pump and probe fields; G = dE/2ħ, G m = dEm/2ħ; and 
d is the transition dipole moment operator. The terms Aki  rk 
in the system of Eqns (1) determine the contributions of the 
spontaneous decay of the kth sublevel of the upper state m to 
the ith sublevel of the lower state n (the rate of this process is 
determined by the Einstein coefficient Amn), they are present 

M' = –1/2 M' = 1/2

M = –1/2 M = 1/2

A2 A2
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1 – a0

m
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Figure 1.  Schematic of kinetic processes for the transition between lev-
els with angular momenta J = 1/2. Solid and dashed arrows denote tran-
sitions under the action of strong and probe fields, respectively; dotted 
arrows denote spontaneous transitions (rates A1, A2, and Ac); solid arc 
arrows denote magnetic coherences; and dotted wavy arrows denote 
spontaneous decay of magnetic sublevels of state m into levels of state n 
and other lower levels; 1 – а0 is the fraction of this process, and  а0 = 
Amn /Gm is the branching parameter of the transition.
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in the equations for the populations of the lower energy levels 
and are absent in the equations for the populations of the 
upper levels. The term Rik

s  in the system of Eqns (2) describes 
the spontaneous transfer of the magnetic coherence of the 
sublevels of the upper state to the sublevels of the lower state 
at a rate Ac determined by the Einstein coefficient Amn of the 
transition (see below). 

Let us consider the problem of the interaction of optical 
fields with the above transitions in a coordinate system with 
the quantisation axis along the direction of the strong field 
electric field vector E (directed along the z axis). Then the 
strong field induces transitions between magnetic sublevels 
(Fig. 1, Fig. 2a) with a change in the magnetic quantum num-
ber М – М' = 0, whereas the orthogonally polarised probe 
field induces transitions with М – М' = ±1. In this case, opti-
cal fields induce low-frequency coherence between the mag-
netic sublevels of the upper and lower states with М – М' = ±1 
(the so-called optical orientation), whose contribution to the 
probe wave absorption spectrum will be of further interest. It 
is in this formulation that one can obtain simple analytical 
solutions of the problem for these transitions. This consider-
ation is also valid for the problem of waves propagating 
through a medium orthogonally to a weak external magnetic 
field. 

When considering the problem in a coordinate system 
with the quantisation axis along the direction of the strong 
field wave vector k (k is directed along the z axis; the case of 
light waves propagating along the direction of the magnetic 
field), both light fields are coupled to the same magnetic sub-
levels, inducing transitions with М – M' = ±1. In this case, the 
magnetic coherence is absent for the transition between the 
levels with momenta J = 1/2, whereas for the transition 
between the levels with momenta J = 1, the magnetic coher-
ence is induced between the sublevels of each of the states 
with a change in the magnetic quantum number  М – M' = ±2 
(the so-called optical alignment, Fig. 2b). This effect is pro-
duced both by the individual action of the strong or probe 
wave and by their joint action. In this formulation of the 
problem, a large number of independent parameters and the 
complexity of expressions make the analytical solutions of 
Eqns (1) and (2) practically useless and numerical solutions 
are more informative. In particular, the numerical solutions 
of the equations in Refs [16, 17] made it possible to determine 

the physical processes giving rise to narrow structures in the 
spectra of saturated absorption resonances for a number of 
degenerate atomic transitions, including the transition 
between levels with angular momenta J = 1, and to reveal the 
role of optical alignment in the formation of these narrow 
structures. 

2.1. Probe field absorption spectrum in a system of two levels 
with angular momenta J = 1/2

Consider a transition between the energy levels with angular 
momenta J = 1/2 (Fig. 1) in the coordinate system with the 
quantisation axis directed along the strong wave electric field 
vector E. We seek the solutions of Eqns (1) and (2) according 
to the procedure of the probe field method [14, 19], up to 
terms linear in G μ, in the form

( ) ( )exp expi ir t r t*
mi mi mi
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( ) ( )exp expi ir t r tjik jik
1
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where j = m, n; i = +1/2, –1/2; k = –1/2, +1/2; and e = wm – w = 
Wm – W. For immobile atoms W = w – wmn and Wm = wm – wmn.
Taking the motion of atoms into account is reduced to the 
replacemen W ® W – ku, Wm ® Wm - kmu, and e ® e = wm – w – (kμ 
– k)u in the equations, where u  is the atomic velocity vector. 

The first two solutions (3) describe the populations of the 
sublevels of the states m and n, and the third one describes the 
medium polarisation contributed by the allowed transitions 
(optical coherence) between the sublevels of the states m and 
n. The fourth solution describes the medium polarisation 
introduced by forbidden transitions between the sublevels of 
one state (the MC of the levels). 

For the system of levels under consideration (see Fig. 1), 
we have the following relationships between the rates of spon-
taneous decay of the magnetic sublevels А1, А2 and the mag-
netic coherence Ас: А1 = Аmn /3, А2 = 2Аmn /3, А1 + А2 = Аmn, 

M' = –1 M' = –1

M = –1 M = –1

s

а б

0 l p 1 m 0

0

1 m

d 0 k q 1 1n n

1 – a0 1 – a0

Figure 2.  Schematic of the interaction of optical fields with sublevels of the transition J = 1 ® J = 1, when the wave propagates (a) orthogonally and 
(b) parallel to the direction of the magnetic field. Solid lines denote the strong field, dashed lines denote the probe field, dotted lines (straight and 
wavy) indicate spontaneous decay of magnetic sublevels of state m into levels of state n and other lower levels; 1 – a0 is the fraction of this process.
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and Ас = –Аmn/3, where Аmn is the first Einstein coefficient of 
the transition [14, 19]. The matrix elements of the operator of 
interaction with the field for the transition between magnetic 
sublevels with  M' ® M are GМ¢,M = G±1/2, ±1/2, which we denote 
as G+1/2, +1/2 = G+, G–1/2, –1/2 = G– , G+1/2, –1/2 = G+– , and G–1/2, +1/2 
= G–+ . For these elements, the following relations are valid:  
G+ = –G– and G+– = – G–+.

Let us also specify the elements of the density matrix in 
solution (3) and denote the coefficients at the populations of 
the magnetic sublevels of the states m and n as mi m

0 0r r= ! , 
r rmmi = ! , ni n

0 0r r= ! , and r rnni = !. We also denote the coeffi-
cients at the coherences for the allowed transitions between 
sublevels of states m and n as ik mn

0 0r r= ! , r rik = !" , and rik
1 = 

r 1!" ; and the coefficients at the coherences for the transitions 
between sublevels of one state as r rjik j= !"  and rjik

1 ® r 1!"  (  j = 
m, n). 

When solving Eqns (1) and (2) by the probe field method 
for G >>  G μ, the system of equations in the zero-order approx-
imation with respect to G μ for populations and coherence for 
the transition between magnetic sublevels with М = M' = 1/2 
will have the form: 

2 ( )Re iG Q*
m m mn m

0 0r rG + =+ + + +,

2 ( )Re iA A G Q*
n n m m mn n
0

1
0

2
0 0r r r rG - - - =+ + - + + +,	 (4)

( ) ( ) 0i iGmn m n
0 0 0r r rG W- + - =+ + + + .

The system of equations for respective quantities for the tran-
sition between magnetic sublevels with М = M' = –1/2 has a 
similar form. 

Due to the symmetry of the problem with respect to the 
signs of the magnetic quantum numbers of states and the rela-
tion А1 + А2 = Аmn, the solutions to Eqns (4) are the same as 
for the two-level system [14]: 
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where  ; 2 | | / ;G1s mn n m
2k k gG G GG G= + = +  gnm = Gm + Gn – 

Amn; and Nn = Qn/Gn , and Nm = Qm /Gm are the populations of 
the magnetic sublevels of the states n and m in the absence of 
the strong field. 

The systems of equations of the first-order approximation 
with respect to G μ from Eqns (1) and (2), which determine the 
probe field absorption spectrum, are formed by the coeffi-
cients of the density matrix elements r+– , r+–1   , r–+, and r–+1  for 
allowed transitions and the coefficients rj+– , r j

1
+-, rj – +, and 

r j
1
-+ (  j = m, n) for transitions between sublevels within each 

of the states. In the case of a transition with М' = 1/2 ® M = 
–1/2, this system of equations has the form:
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n m
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where p = G – iW. 
The term Aс rm+– in the second equation of system (7) 

describes the effect of transferring the MC of the upper state 
levels to the lower state. Equations for the coefficients of the 
density matrix for the transition with M' = –1/2 ® M = 1/2 are 
obtained from equations (7) by replacing the signs in the indi-
ces, + « –. Both systems of equations are closed and uniquely 
solvable with respect to the coefficients. Solutions of Eqns (7) 
yield the expression of the coefficient  r+–:
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where

[ ( )] [ ( )] ( ) ( )i i i im ne e e eD G W G W G G= - + - - - -+  

+ 2(G  – ie)( 2 ) | |iA Gcm n
2eG G+ + - + . 

The solution for the coefficient r–+ is similar to expressions (8) 
and (9) with the change of signs, + « –, in the subscripts. 

According to Ref. [14], the absorption spectrum of the 
probe field is determined through the work of the field 

2 ( )Re iP r G r G'w=- +
) )m m

m m +- +- -+ -+ .

Using solution (8), we arrive at the expression for the work of 
the probe field:
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where it is taken into account that | G+–
m   | 2 = | G–+

m  | 2 and | G+ |2 
= | G– |2. 

Expression (10) describes the absorption spectrum of the 
probe field for the transition between levels with angular 
momenta J = 1/2. The spectrum is formed by the effect of 
saturation of the level populations (incoherent process) and 
by coherent processes, such as the effect of level splitting by a 
strong field and nonlinear interference effects (NIEF) [14], 
caused by the MC and its transfer from the upper state to the 
lower one. 

In the case of immobile atoms, Гm  >>  Гn, in a weak satu-
rating field (k  <<  1), the work of the probe field near the cen-
tre of the line (e  <<   Г, Гm; W = 0) is derived from Eqn (10) as
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From Eqn (11) it follows that in the probe wave absorp-
tion line with half-width Г, a narrow Lorentz dip with a 
half-width Гn and an amplitude determined by the factor  S 
= Гm – Гn + Ac is formed. Since for the transitions between 
energy levels with angular momenta J = 1/2 we have Ac = 
– Аmn/3  (see above), at Гm >>   Гn, the relation S » Гm – Гn + 
Ac /3 > 0 always holds, and the structure for any transitions 
appears as a narrow dip. The narrow structure in the nonlin-
ear resonance shape (11) is due to the MC of the transition 
levels induced by optical the fields in transitions between the 
magnetic sublevels of each of the states (with the major con-
tribution from the lower state), as well as the contribution of 
the MC transfer from the upper state to the lower one, the 
transfer rate constant being Ac = –Аmn/3. In this case, the 
relative contribution of the MC transfer process to the reso-
nance amplitude is determined in accordance with Eqn (11) 
by the quantity Ac /(Гm – Гn) = –Аmn /3Гm. Since Ac  < 0, the 
MC transfer leads to an increase in absorption at the line 
centre. The maximum change in absorption occurs in a 
closed transition (for Аmn = Гm) and amounts to ~30 % of 
the resonance amplitude due to the MC levels. In the case of 
open transitions (for Аmn < Гm), the change in the absorp-
tion value is much smaller (proportional to the ratio  
Аmn/Гm). 

For moving gas atoms, the contribution of coherent pro-
cesses to the work of the probe field in counterpropagating 
light waves is known to be insignificant (suppressed in the 
proportion of Г/kuT). It manifests itself only at a high satu-
rating fields (k >>   1) [14, 20], whereas in unidirectional 
waves, this contribution is decisive even at low saturating 
fields. 

In the case of unidirectional waves, when Eqn (10) is aver-
aged over the Maxwell velocity distribution of atoms at large 
Doppler broadening (kuT >>  Gs), the work of the probe wave 
field in the approximation of the first-order nonlinear correc-
tions with respect to the saturating field (k<<   1) for the fre-
quency detunings of the fields Wμ <<  kuT, W <<  kuT  is deter-
mined as
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It follows from expressions (12) – (14) that in a weak saturat-
ing field, a resonance is formed on the Doppler probe wave 
absorption contour in the form of a dip with a half-width of 
2Г, centred at e = 0. Near the line centre, as in the case 
immobile atoms, structures are formed whose parameters 
are determined by the values of the relaxation constants of 
the transition [via the factor h(e)]. When Гm  >>   Гn, we pres-
ent the factor h(e) near the line centre (at e/Гm <<   1) in the 
form
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A A1 c c
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.h e
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G
G G-

+
-

- +c m.	 (15)

From Eqn (15) it follows that in the broad dip in Eqn (12) 
near the line centre, a narrow Lorentz structure with half-
width Гn is formed, the amplitude of which is determined by 
the level relaxation constants, the first Einstein coefficient 
Amn, and the upper state MC relaxation constant Ac, like in 
the case of immobile atoms. For Гm >>  Гn the factor Гm – Гn + 
Ac = Гm – Гn – Amn /3  in Eqn (15) is always positive, and the 
structure in any transitions manifests itself as a narrow dip. 

Let us compare the contributions of the first (population) 
and second (coherent) terms to the resonance amplitude near 
the line centre. From Eqns (13) and (14) it follows that the 
amplitudes of the population and coherent dips are related as 
[(1 + 2Гn /(Гm + Гn – Amn)] /[(Гm – Гn – Amn  /3) /(Гm + Гn – Amn)]. 
Hence, in an open transition with а0 = 0.5, the amplitude ratio 
is approximately 1/2, and in a closed transition (with а0 = 1), 
the contribution of the MC to the resonance amplitude will 
significantly exceed the contribution of the incoherent term 
(in the proportion of Гm /3Гn >>   1). The contribution of the 
transfer of the upper state MC to the lower state in the reso-
nance amplitude in Eqn (12) is determined by the quantity  
Ac  /(Гm – Гn). With Ac = – Amn  /3, the MC transfer contribu-
tion leads to an increase in absorption at the line centre 
(because Ac < 0), its maximum value being reached at a closed 
transition and amounting to ~30 % of the amplitude of the 
narrow resonance structure. 

Thus, the nonlinear resonance in a closed transition 
between the energy levels with angular momenta J = 1/2 for 
orthogonal polarisations of fields and a weak saturating field 
is exclusively coherent and is due to the MC of the levels 
(mainly those of the lower state) of the transition. The reso-
nance will also have a coherent nature in a strong saturating 
field (see below). 

2.2. Probe field absorption spectrum in a system of two levels 
with J = 1/2 in the saturating field of arbitrary intensity 

To reveal the features of the behaviour of the saturated 
absorption resonance shape and the processes forming the 
resonance depending on the intensity of the saturating field 
and the parameters of the atomic transition, numerical stud-
ies of the probe wave absorption spectrum were performed 
according to expressions (9) and (10) for the exact solution of 
the problem. In modelling the resonance shape, the contribu-
tions from the incoherent effect of saturation of level popula-
tions and the coherent effects, such as inducing MC by optical 
fields and its transfer from the levels of the upper state to the 
lower one, as well as splitting of the transition levels by the 
saturating wave field, were determined. The calculations were 
carried out for the following parameters of the atomic transi-
tion:  Гm = 5.5 ́  107 s–1, Гn = (10–2 – 1)Гm, Г = (Гm + Гn)/2. The 
ratio Nm /Nn of the initial level populations was assumed to be  
~10–2. The Doppler linewidth (kuT)D was taken to be 5 ´ 
109 s–1. For the integration, the range of particle velocities u 
was taken ±3(kuT)D /k with a step Du = (10–3 – 10–4) ´
(kuT)D /k, the strong field saturation parameter k varied 
within 0.01 – 10, and the branching parameter a0 = Amn /Гm 
varied in the range 0 – 1. The nonlinear resonance shape was 
determined from the work (10) of the probe field as a(Wm) = 
Gmn Pm ́  ( )G4

2 1'w +-
-

m
m .

The calculations showed that solutions of (12), (13), and 
(14) in the approximation of the first-order nonlinear correc-
tion in the strong field intensity practically do not differ from 
the exact solution for the saturation parameters of the strong 
field k < 0.1. For k ³ 0.2, the differences between the solu-
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tions of both the first-order and the next approximations in 
the strong field become significant (especially for a closed 
transition), and it is impossible to use the analytical formulae 
of these approximations. The calculations also revealed sig-
nificant differences between the spectra of nonlinear reso-
nances and the resonance-forming processes for open (а0 < 1) 
and closed (а0 = 1) atomic transitions. 

The characteristic shapes of nonlinear resonances, as well 
as the contributions to the resonance from the level popula-
tion saturation effect are shown in Fig. 3 for a closed transi-
tion at Гn /Гm = 2 ́  10–2 and k = 0.01 – 5. It can be seen that the 
resonance manifests itself on the Doppler profile of the probe 
wave absorption line as a wide dip and a narrow structure 
(dip) near the centre of the line, the parameters of which 
depend on the intensity (saturation parameter k) of the strong 
wave. Studies of the resonance-forming processes have shown 
that the wide dip (dash-dotted lines) is due to the incoherent 
effect of saturation of the level populations by a strong field, 
while the narrow structures are due to the contribution of 
coherent processes. In this case, for any type of transitions, 
with a change in the saturation parameter in the range of 
0.01 – 5, the dependences of the amplitude and width of the 
incoherent dip obey, respectively, linear (~k) and close to the 
square root of k (~ 1 k+ ) laws, as in a system of two levels 
[14, 20]. 

In the case of open transitions, coherent processes mani-
fest themselves in a narrow frequency region near the centre 
of the line and are due to the MC of the levels induced by light 
fields, mainly in the lower state. Their maximum contribution 
to the resonance amplitude in this region approximately cor-
responds to the contribution of the incoherent effect. The 
change in the intensity of the saturating field manifests itself 
in changes (within small limits) of the amplitude and width of 
the narrow structure of the resonance according to a linear 
law with respect to k. 

In the case of a closed transition (Fig. 3), the resonance 
spectrum of saturated absorption is formed mainly by the 
contributions of coherent processes, in which dependences on 
the intensity (saturation parameter k) of the strong field char-
acteristic of these processes appear. For example, at low val-

ues of this parameter [k < 0.1, curves ( 1, 2 )], the contribution 
of saturation of the level populations to the resonance shape 
is small, and the resonance spectrum is formed exclusively by 
coherent processes: the MC of the levels induced by the opti-
cal fields and its transfer, which form a dip-shaped narrow 
structure having the width of the lower level Гn. 

With an increase in the saturation parameter in the range 
k = 0.01 – 0.5 [curves ( 1 – 3 )], the amplitude of the coherent 
dip and its width increase (according to a law close to linear in 
k), and at k ~ 1 and more [curve ( 4 )] additional structures 
appear at the line wing. The frequency interval between the 
maxima of these structures is  Dw ~ 10–2 ́  DwD » Гm » 2Г, i.e. 
it is determined by the width of the transition line adopted in 
the calculations. With a further increase in k (k > 2), the shape 
of the resonance has the form of three spectral components 
[curves ( 4, 5 )]. In this case, with an increase in the saturation 
parameter, the amplitude of the central component decreases, 
the amplitudes of the side components increase, and the fre-
quency separation between their maxima obeys the root 
dependence on the parameter k (linear dependence on the 
interaction parameter G). This fact indicates that the extreme 
side components of the spectrum are due to the field splitting 
of the transition levels. 

Figure 4 shows the shapes of the contribution to the reso-
nance from the transfer of the MC from the upper state to the 
lower state for a closed transition at various values of the 
strong field saturation parameter. It can be seen that the MC 
transfer leads to an increase in the absorption coefficient at 
the centre of the line, and its maximum value with the values 
of the transition relaxation constants adopted in the calcula-
tions is realised at .0 1Kk  and amounts to ~30  % of the reso-
nance amplitude. In the case of an open transition with а0 = 
0.5, this contribution is much smaller (less than 10 % of the 
narrow structure amplitude). In this case, the behaviour of 
the shapes of the MC transfer contributions with a change in 
the saturating field intensity is specific for coherent processes. 
At k < 0.05, the shape of the MC transfer contribution mani-
fests itself as a sign-changing interference structure [curve 
( 1 )], which is typical for NIEF [14]. At k = 0.05 – 0.5, a char-
acteristic field splitting of the spectrum of contributions near 
the line centre into two components occurs [curves ( 2, 3 )], 
while at k  ³ 1, the spectra acquire a complex shape [curves 
( 4, 5 )]. Estimation of the splitting in the case of curve ( 2 ) (the 
beginning of the effect, k = 0.05) yields  Dw »  6 ´ 10–2Гm » 
3Гn, i.e., it is determined by the half-width of the lower state 
energy levels. For curve ( 4 ) (k = 1), the splitting is  Dw » 36Гn 
» 1.4Г, i.e., it is already determined by the homogeneous 
half-width of the transition line. This splitting also manifests 
itself as a total absorption resonance [Fig. 3, curve ( 4 )]. 
Estimates of the interaction parameter G from relation (7) 
give G » 0.1Гm » 5Гn (at k = 0.05) and G » 0.5Гm » Г (at 
k = 1). 

The analysis of the dependences of the splitting value in 
the spectra of the MC transfer contribution to the total reso-
nance (Fig. 4) on the saturation parameter in the range k = 
0.01 – 1 shows that the splitting grows faster than the root 
dependence on k, but slower than the linear one. In this case, 
the minimum splitting in the spectrum of the contribution of 
the MC transfer, as follows from the estimates, is determined 
by the relaxation constant of the lower levels Гn and is due to 
the splitting of the levels of the lower state of the transition by 
the field of the saturating wave. Thus, the spectrum of the 
MC transfer contribution to the total resonance turns out to 
be more sensitive to the intensity of the saturating field, since 
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Figure 3.  Population parts (dashed line) and total resonances (dash-
dotted line) of saturated absorption for a closed (а0 = 1) transition at 
Гn /Гm = 0.02, k = 0.01 ( 1 ), 0.1 ( 2 ), 0.5 ( 3 ), 1.0 (4), 5 ( 5 ).
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here the field splitting begins to manifest itself already at the 
splitting of the levels in the lower long-lived state. The split-
ting in the total absorption resonance spectrum (see Fig. 3) 
manifests itself at level splittings larger than the homogeneous 
transition linewidth, which in the absence of collisions is 
determined by the relaxation constants of the levels of both 
the lower and upper states [14]. 

It should be noted that for closed transitions, in contrast to 
open ones, the action of the saturating field manifests itself 
more radically in the shape of resonances both near the centre 
and in the line wings. Since the incoherent (population) part of 
the resonance is determined by the saturation parameter k, and 
the coherent part is determined by the intensity of the saturat-
ing field G2 [see Eqns (10), as well as (13)and (14)], with the 
same values of the saturation parameter, the intensity of the 
saturating field for a closed transition will be [(1 – а0) Гm /Гт + 
1] times greater than the corresponding intensities for open 
(with the branching parameter а0 < 1) transitions, which causes 
the spectral differences between these transitions in the contri-
butions of coherent processes and the shapes of resonances. 

2.3. Probe field absorption spectrum in a system of two levels 
with J = 1 

A schematic of the interaction of optical fields with magnetic 
sublevels of the transition between levels with angular 
momenta J = 1 in a coordinate system with the quantisation 
axis directed along the strong field vector is shown in Fig. 2a. 
In this system, optical fields form two subsystems with transi-
tions of L and V type, interconnected by spontaneous transi-
tions with a change in the magnetic number M – M' = ±1. In 
a weak probe field, the population of the upper magnetic sub-
level with M' = 0 is practically independent of the intensity of 
the strong field and is equal to the equilibrium value. This 
circumstance simplifies the analytical consideration of the 
problem based on solutions for subsystems of L and V-type 
transitions. 

Let the subsystems be formed by the magnetic sublevels of 
the transition p, l, s (upper) and q, k, d (lower). The solutions 
of Eqns (1) and (2) for off-diagonal elements of the density 
matrix of a moving atom are sought, according to [14, 21], in 
the form:  rpq = rpq exp(–iWt), rsd = rsd exp(–iWt), rpk = rpk    
exp(–iWmt), rkq = rkq exp[iet], rsk = rsk exp(–iWmt), and rkd = 
rkd exp[iet] in L configurations and rlq = rlq ´ exp(–iWmt), rlp = 

rlp exp[–iet], rld = rld exp(–iWmt), and rls = rls ´ exp[–iet] in V 
configurations. Here, the frequency detunings take into 
account the Doppler shift: W = w – wmn – ku, Wm = wμ – wmn – 
kμu, and e = wμ – w – (kμ – k)u.

Then in the steady-state case, in the absence of splitting of 
transition levels, we obtain from Eqns (1), (2) the following 
systems of algebraic equations for the level populations ri  

and coherences rij (for one half of the transition): 

Re( )iQ G r2m p p pq1G = -
)r ,

Re( ) Re( )i iQ A A G r G r2 2n q q pq p lq l pq lq1 2r r rG = + + + +
) )

m ,

Re( ) Re( )i iQ G r G r2 22 3m l l l dq lrG = + +
) )
m m ,

	 (16)

Re( ) Re( )i iQ A A G r G r2 2 4k k k k skn p p psk s 1r r rG = + + + +
) )
m m , 

( ) ( )i i i ir G G r G rpq p q pl kq1 2 1r rG W- =- - - +m m ,

( ) ( )i i ir G G rpk p k qk1 1r rG W- =- - +mm ,

( ) ( )i i ir G G rlq l q lp2 1r rG W- =- - -mm ,	 (17)

( )( )i ir G r G rp q q
*

l p lm 2 1eG - = -m ,

( )( )i ir G r G r A r*
kq pq kp cn sl1 1eG + = - +m . 

In Eqns (16) and (17), the following notations are introduced 
for the matrix elements of the interaction operators between 
the magnetic sublevels of the transition:  G1 = Gpq, G2 = Gsd  

for the strong field and G1m = Gpk
m, G2m = Glq

m, G3m = Gld
m, and 

G4m = Gsk
m for the probe field. In the last equation of system 

(17), the term Acrsl describes the spontaneous transfer of the 
MC from the levels of the upper state to the levels of the lower 
state. Similar equations are also valid for the second half of 
the transition. 

Eliminating the amplitudes rkq and rlp from Eqns (17), we 
obtain the equations for the amplitudes of coherences for the 
p – q, p – k and l – q transitions:
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Similar equations are also valid for the amplitudes of coher-
ences in the second half of the transition with the appropriate 
change of the indices p « s, q « d, as well as the indices of the 
matrix elements of the interaction operators G1 « G2, G1µ « 
G4µ, and G2µ « G3µ. 

For the transition considered, the rates of spontaneous 
population and MC transfer between magnetic sublevels are 
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Figure 4.  Contributions to the resonance of the effect of MC transfer 
from the upper state to the lower one for the closed transition (а0 = 1) at 
W = 0, Гn /Гm = 0.02, and k = 0.01 ( 1 ), 0.1 ( 2 ), 0.5 ( 3 ), 1.0 ( 4 ), 5.0 ( 5 ).
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as follows: Alk = 0, and Apq = Apk = Asd = Ask = Alq = Ald = Ас 
= Amn/2. Under uniform pumping of the sublevels of the 
upper and lower states (Qp = Qs = Ql and Qq = Qd = Qk) in the 
absence of external radiation fields, there are identical popu-
lation differences between them: DNqp = DNql =DNkp = DNks = 
DNdl = DNds = DN. 

Solutions (16) – (18) for arbitrary fields are difficult to 
analyse, therefore, as for the transition between levels with 
angular momenta J = 1/2, we will further consider the case of 
a weak probe field (Gµ  <<   G). In this case, the energy level 
populations in Eqns (16) are determined by the strong field 
only, and Eqns (17) and (18) can be presented in a simpler 
form

( ) ( )i ir Gpq p q1
0

1
0 0r rG W- =- - , 

( )r r-i
i

i
G

r G
n

pk p k
1
2

1
0 0

e
G W

G- +
-

=-m me o =

	
( ) ( )

(
i i

G q

n

p1
2 0 0

e
r r

G G W-
- +

- )6 G
( ) ( )
( )
i i

A G G r G rc

n

ds ld

m

1 3
0

2

e eG G-
- -

-
)

m ,	 (19)

( )r r-i
i

i
G

r G2
m

lq l q
1
2

0 0

e
G W

G- +
-

=-m me o =

	
( ) ( )

(
i i

G p q

m

1
2 0 0

e
r r

G G W-
- +

- )6 G.

Here ri
0 are solutions of the system of equations that follows 

from (16) in the case when only the strong field acts; these 
solutions were derived by us in Ref. [22]. From them it follows 
that the level population differences are determined by the 
relations:
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where 1s1 1/ kG G +  is the saturated transition width; k1 = 
k(1 + Аmn /2gmn); gmn = Gm + Gn – Аmn; k = 2| G1 |2  gmn/G GmGn is 
the transition saturation parameter; and DN is the population 
difference between the sublevels of the lower and upper states, 
similar for all sublevels under the uniform excitation of the 
energy levels.

The probe field absorption spectrum, according to [14], is 
determined by its work

Re iP G r2 *

,
ik ki

i k

'w=-m m m/ .

Then, using the solutions of the system of equations (19), we 
can express the work of the probe field for one half of the 
transition in the form Pμ = Pm

0 + dPμ, where Pm
0 is the work of 

the probe field in the absence of the MC transfer, and dPμ is 
the addition to the work of the probe field due to the transfer 
of the MC:
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where ( ) ( ) | | ; ( ) ( )i i i iGn m1 1
2

2e eD G G W D G G W= - - + = - -m m  
+ | G1 |2; ( ) ( ) | |i i G2m3

2eD G G W= - - +m  ; and the brackets 
á…ñ denote averaging over the Maxwell velocity distribution 
of atoms.

The contributions of the second half of the transition are 
determined by the same expressions with the appropriate 
change of indices of the matrix elements of the interaction 
operators and the density matrix, as well as the replacement 
D2 « D3 and D1 ® ( ) ( ) | |i i Gn4 2

2eD G G W= - - +m . Because 
of the problem symmetry, the contribution of the second half 
of the transition yields a factor of 2 in the expression of the 
total work of the probe field.

Further, we consider the main regularities of the MC 
effect manifestation in the probe wave absorption spectrum 
within the approximation of first-order corrections with 
respect to the saturating field. In this approximation, when 
expressions (21) and (22) are averaged over the velocities of 
atoms upon a large Doppler broadening, 1 1kG +  <<    kuT, 
and field frequency detunings Wμ <<    kuT, W <<    kuT the 
expression for the work of the probe fields can be represented 
in the form
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is the function that determines the structure of the spectrum 
in the absence of the MC transfer; and

С0 = (Гm – Гn + Amn /2)/(ГmГn); 

) ) )
Re

( ( (k i i i
P A N

G G G G
8

2c
n m

1 3 1 2
' pd w

u e e e
D

G G G=
- - -

) )

m m
m m

T
; E	 (25)

is the contribution of the MC transfer process. Note that in 
expressions (22) and (25) the contribution of the MC transfer 
is determined by the product of the matrix elements of the 
operator of interaction of the atom with fields G1μ

* G3μ G1G2
* or 

by the product G4μ
* G2μ G2G1

* (for the second half of the transi-
tion). Such dependence of the operator of interaction between 
the fields and the transition on the matrix elements is charac-
teristic of interference processes. For products of matrix ele-
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ments of the transition between energy levels with angular 
momenta J = 1, according to [3], the equality  G1μ

* G3μ G1G2
* = 

G4μ
* G2μ G2G1

* = | G1μ | 2 | G1 | 2 holds. 
It follows from relations (23) and (24) that in the absence 

of the MC transfer, the absorption spectrum of the probe 
field for the considered transition consists of a Doppler con-
tour and three resonance structures centred near the field fre-
quency difference e = 0 and having different amplitudes and 
widths. The first resonance structure [the first term in Eqn 
(24)] is represented by a Lorentzian with a half-width of 2G 
and an amplitude determined by the relaxation constants of 
the transition and the intensity of the strong wave. Since the 
signs of the amplitude terms are positive, this structure mani-
fests itself as an absorption peak. The peak maximum is 
realised at a closed transition (at Гm = Amn). Note that at 
Гm >>  Гn the main contribution to the formation of this peak 
structure is made by the V transition scheme. 

The other two structures in Eqn (24) are represented by 
Lorentzians with half-widths of the upper (Гm) and lower (Гn) 
levels and form two dips with equal amplitudes in the work of 
the probe field. 

In the case of radiative level relaxation at Гm >>   Гn, 2Г = 
Гm + Гn » Гm, the function F0(e) takes the form
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In this case, the absorption spectrum will consist of a broad 
(with a half-width of 2G ) absorption peak, which is formed as 
a result of the addition (subtraction) of two broad Lorentz-
type contours with different signs of the amplitudes and a 
narrow dip with a half-width Гn. The ratio of the amplitudes 
of the peak structure and the dip is determined as ~1 + 
Amn /2Гm. The maximum of this ratio (1.5) is realised for a 
closed transition (for Amn = Гm). 

The contribution of the MC transfer (25) to the work of 
the probe field, considering the relations for matrix elements, 
takes the form: 
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Then expression (23) for the operation of the probe field reads 
as follows: 
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It follows from expression (29) that the MC transfer man-
ifests itself both in the amplitude of the population part of the 

resonance and in the amplitudes of its structures: the ampli-
tudes of wide structures increase, while the amplitude of the 
narrow dip decreases. 

In the case of radiative relaxation of levels and Гm >>  Гn, 
the function  F(e) has the form: 
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As follows from Eqn (30), the MC transfer effect leads to a 
decrease in the amplitude of the wide peak and the amplitude 
of the narrow resonance dip. Moreover, for the peak struc-
ture, the relative change in the amplitude is small, ~AcГn /Гm

2, 
while for a narrow dip it is ~Ac/Гm and can reach ~50 % in 
the case of a closed transition (at Amn = Гm, and Ac = Amn /2). 

Thus, the MC effect with М – M' = ±1 (the so-called opti-
cal orientation, see Fig. 2a) at the transition between energy 
levels with angular momenta J = 1 forms in the probe wave 
absorption spectrum a narrow structure (dip) with a half-
width, equal to the half-width of the lower level. The MC 
transfer only reduces the amplitude of the resonance without 
qualitatively affecting its shape. Note that the MC with  М – 
M' = ±2 (the so-called optical alignment, Fig. 2b) at this tran-
sition, according to our paper [16], manifests itself in a com-
plex way. In the case of parallel polarisations of the radiation 
fields, the MC of levels forms a wide dip in the resonance 
spectrum with a width equal to the width of the transition 
line. In the case of orthogonal polarisations, it forms a nar-
row dip with a width equal to the width of the lower level. The 
contribution of the upper level MC transfer for parallel polar-
isations leads to a decrease in absorption, and for orthogonal 
polarisations – to an increase in absorption at the line centre. 
For any wave polarisations, the maximum changes in the 
resonance amplitude because of the MC transfer do not 
exceed 10 %; the MC transfer also does not affect the qualita-
tive form of the nonlinear resonance. 

3. Conclusions

The presented analytical and numerical studies of the satu-
rated absorption spectra of transitions between levels with 
angular momenta J = 1/2 and J = 1 in the probe field method 
with unidirectional orthogonally polarised laser waves dem-
onstrate their dependence on the relaxation constants Гm and 
Гn of the levels, the degree of openness a0 of the atomic transi-
tion, and the strong wave intensity. 

It is shown that the specific features of the resonance spec-
tra are formed in L configurations and manifest themselves as 
narrow structures – dips of a coherent nature, against the 
background of contributions from incoherent processes. The 
physics of incoherent processes and the form of their contri-
butions to the resonance of saturated absorption for these 
transitions are different. For the transition between the energy 
levels with the angular momenta J = 1/2, this is the effect of 
saturation of the level populations by the field of the strong 
wave, which forms a wide dip in the Doppler probe field 
absorption contour. For the transition between the levels with 
J = 1, this is the effect of optical pumping, giving rise to non-
equilibrium population of the lower state magnetic sublevels 
and, as a consequence, to a broad absorption peak in the 
form of the resonance. The dip and peak parameters are 
determined by the constants of relaxation of the levels Гm, Гn 
and the coherence Г, the intensity of the saturating field, and 
the branching parameter a0. 
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The reason for the appearance of narrow (with the width 
Гn of the lower level) structures (dips) of resonances is the MC 
of the levels (the so-called optical orientation) induced by 
optical fields and its transfer from the upper state to the lower 
one. The main contribution to the resonance amplitude is 
made by the levels of the lower state; the contribution of the 
MC transfer from the levels of the upper state to the lower 
state manifests itself only as an addition to the absorption 
near the centre of the line. The maximum change in absorp-
tion occurs at a closed transition (at Amn = Гm) and can be 
~30 % of the resonance amplitude at the transition between 
levels with angular momenta J = 1/2 and ~50 % at the transi-
tion between levels with angular momenta J = 1. In the case 
of open transitions (for Amn < Гm), the absorption changes 
significantly less (in proportion to the Amn /Гm  ratio). The 
amplitudes of the population part of the resonance and coher-
ent structures at the transition between levels with angular 
momenta J = 1 are close in magnitude, and in the case of a 
transition between levels with angular momenta J = 1/2, the 
contribution of coherent processes significantly exceeds the 
population part of the resonance, and the resonance is exclu-
sively coherent. 

The form of the contribution of the MC transfer to the 
total resonance has an interference character typical for 
coherent processes. The spectrum of the MC transfer contri-
bution, as in the case of a transition between levels with angu-
lar momenta J = 1/2, turns out to be more sensitive to the 
intensity of the saturating field, since the strong field influ-
ence on the shape of the transfer contribution begins to mani-
fest itself already at intensities that cause splitting of the levels 
of the lower long-lived state, whereas in the total resonance 
spectrum this effect manifests itself in resonance wings at level 
splittings exceeding the homogeneous width of the transition 
line. It is important to note that the effect of the transfer of 
the MC levels (optical orientation) for the considered transi-
tions, as well as the effect of optical alignment studied in [16], 
does not qualitatively affect the shape of the nonlinear reso-
nance and manifests itself only quantitatively. 

In conclusion, we note that the above results were obtained 
for monochromatic light fields. It was shown in Ref. [23] that 
when optical coherence is induced between magnetic sublev-
els in a resonant medium with a transition of the L type by 
saturating light beams with a finite spectral width due to 
phase fluctuations, correlations of intensity fluctuations of 
these beams arise. In this case, the width of the intensity cor-
relation resonance can be 25 % of the EIT resonance width in 
the medium. Therefore, the problem of the influence of the 
finite width of the spectrum of optical fields on the limiting 
parameters of narrow structures of MC resonances at transi-
tions between levels with angular momenta J = 1/2 and J = 1 
is important and will be considered in future. 
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