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Abstract.  We examine the possibilities of refining an asymptotic 
description and quantitative calculations of the effects induced by 
thermal blackbody radiation (BBR) of the environment on the 
Rydberg states of atoms. Numerical values are calculated and 
asymptotic expressions are proposed for simplified estimates of 
natural lifetimes and threshold photoionisation cross sections for 
Rydberg states of rubidium and caesium atoms with large values of 
the principal quantum number, n ³ 20, and small orbital momenta, 
l = 0, 1, 2, 3. Based on analytical expressions, we present numerical 
estimates for the contributions of photoionisation probabilities to 
the BBR-induced broadening of the Rydberg energy level, as well as 
the contributions of continuum integrals to thermally induced shifts 
in the Rydberg-state energy levels.

Keywords: alkali atoms, Rydberg states, radiative transitions, 
blackbody radiation, ionisation cross section, quantum defect 
method.

1. Introduction

Ultracold atoms in optical traps have been attracting much 
attention in modern research aimed at developing the state-
of-the-art methods for precision measurements of frequency 
and time, as well as at developing quantum devices and infor-
mation processing algorithms [1 – 4]. Atoms in highly excited 
Rydberg states are extremely sensitive to external fields and 
can be used for high-precision measurement of temperature 
of thermal radiation of the environment [so-called blackbody 
radiation BBR)] in a given region of space [5, 6], for measur-
ing weak fields [7], and also for metrological measurements of 
the characteristics of radiofrequency radiation [8]. Well-
developed methods of laser excitation of high-energy states 
make Rydberg states with arbitrary values of the principal n 
and orbital l quantum numbers of the valence electron exper-
imentally accessible [9 – 12].

Alkali metal atoms are promising objects of research not 
only due to the availability of pure substances and the ease of 
cooling and manipulation of individual particles, but also due 
to the simplicity of the one-electron optical spectrum, which 
makes it possible to use the one-electron approximation in 
calculating the characteristics of interaction with external 
electromagnetic fields. Rubidium and caesium atoms are the 

most convenient ones for deep cooling and trapping in optical 
traps, because they have the largest mass among alkali atoms, 
providing the lowest recoil energy and the most convenient 
ways to trap and control the movement of atoms in optical 
traps.

The structure of the excitation energy spectrum of the 
outer (valence) electron of an alkali atom is described with 
good accuracy by the Rydberg formula, in which the energies 
of one-electron states is written using the formulae of a 
hydrogen-like atom with the introduction of the concept of a 
quantum defect. A semi-empirical method of the Fues model 
potential (FMP) and the quantum defect method (QDM) 
have been developed on the basis of the Rydberg formula, 
and are widely used in numerical calculations, in which single-
electron wave functions are represented as modified wave 
functions of a hydrogen-like atom, making it possible to 
obtain analytical expressions for the amplitudes of electro-
magnetic transitions between bound and free states of many-
electron atoms and ions. The numerical values of quantum 
defects are determined from the most reliable tables of energy 
levels [13, 14]. For levels with large principal quantum num-
bers, the energies of which are not available in the literature, 
the definition of quantum defects is based on asymptotic 
expressions similar to those given, for example, in [15, 16].

In this work, we study the interaction of thermal radiation 
with rubidium and caesium atoms in small-angular-momen-
tum Rydberg states. The amplitudes of bound – bound transi-
tions are calculated in the QDM approximation and their 
results are compared with the results obtained in the frame-
work of the FMP method. The data of numerical calculations 
of the lifetimes of the nS, nP, nD, and nF Rydberg states of 
rubidium and caesium atoms are discussed in Section 2. 
Tables are given of numerical values of the natural lifetimes 
of excited states with n £ 10, calculated within the framework 
of the QDM and FMP approximations, in comparison with 
well-known literature data.

In Section 3, we consider the possibility of determining the 
dependence of the shift and broadening of the Rydberg states 
in the BBR field on the principal and orbital quantum num-
bers. General formulae for the cubic term of the Farley – Wing 
function [17] are presented and their possible use to obtain 
corrections to the asymptotic formulae of works [18, 19] in 
analytical form [20 – 23] is discussed.

In Section 4, we consider the contribution of continuum 
states to the broadening and shift of Rydberg states with 
small orbital momenta. Unlike states with large orbital 
momenta, l > n/2, for which the amplitudes of radiative tran-
sitions are exponentially small, the contribution of transitions 
to continuum states to the shift and width of Rydberg states 
with principal quantum numbers n > 20 and small orbital 
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momenta can reach significant values (up to 10 % and higher 
in the range of BBR temperatures over 300 K). Therefore, 
taking into account the ionisation contribution to the broad-
ening and the contribution of the integral over the continuous 
spectrum to the shift of energy levels with l < 5 becomes rel-
evant. For numerical estimates of the corresponding quanti-
ties, use is made of semi-classical expressions for the threshold 
ionisation cross sections. Within the framework of the QDM, 
numerical values of the cross sections for a series of nS, nP, 
nD, and nF Rydberg states with principal quantum numbers 
n = 20 – 300 are obtained. For fast estimates of cross sections, 
a polynomial asymptotic formula is given with polynomial 
coefficients determined by the standard method of polyno-
mial approximation of the numerical values of a function for 
given arguments. All formulae are presented in the atomic 
system of units.

2. Natural width of small-orbital-momentum 
Rydberg states 

The natural width of the excited state of an atom |nl ñ is deter-
mined by the total probability of spontaneous radiative 
decays into states |n’ l’ = l ± 1ñ with lower energy:
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where (l l l> = + + | |) /2l l-l l  is the larger of the two values, l 
and l l; and n nw l  is the transition energy. The main quantities 
that determine probability (1) are the radial matrix elements 
of dipole transitions | |n l r nlG Hl l . The analytical expression for 
the radial wave function of the bound state in the FMP 
method is written in terms of the associated Laguerre polyno-
mial [21],

( )R rFMP
nl  µ ( /2) ( )exp x x L xn

2 1
r-

l l+ ,

with the argument x = 2Zr/n proportional to the radial vari-
able r, with a noninteger effective principal quantum number 
determined by the energy of the state n = Z/ E2 nl- , where Z 
is the charge of the residual ion in whose field the Rydberg 
electron moves; and nr = 0, 1, 2, ... is the radial quantum num-
ber and l is the effective orbital quantum number ( l = n – nr 
– 1). The polynomial of the wave function of the QDM [23]
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is determined from the truncated asymptotic expansion of 
the Whittaker function ( )W x/l 1 2n +  and consists of the prod-
ucts of the factor xn – 1 bounded at r ® 0 and the first terms 
of the series of the hypergeometric function 2 ( 1 ,F l0 n+ -u  

; 1/ )l xn- - -  with argument –1/x = –n/(2Zr). The matrix ele-
ment nl| |n l rG Hl l  both in the FMP method and in the QDM 
can be written as a hypergeometric type polynomial in two 
arguments [16, 23].

Despite the identical fundamentals of the FMP and quan-
tum defect methods based on the semi-empirical hydrogen-
like form of one-electron wave functions, there is a significant 
difference between the results of numerical calculations of the 

amplitudes of radiative transitions within the framework of 
these methods. In particular, the difference (especially for 
nD5/2 states) can be seen for the calculated natural lifetimes 
sp
nlt  of excited states with small orbital momenta of Rb and Cs 
atoms presented in Tables 1 and 2 in comparison with the 
most reliable literature data [14].

As can be seen from Tables 1 and 2, calculations within 
the framework of the QDM yield numerical values of sp

nlt , 
which are mostly closer to the literature data than the numer-
ical values obtained using the FMP method. This result is 
explained, in particular, by the fact that the main contribu-
tion to the probability of spontaneous decay of the states of 
the nl series is made by the amplitudes of dipole-allowed radi-
ative transitions to the lowest states of the series with n'l' =  
l ±1. In the region of localisation of wave functions of low 
states |n' l' ñ, QDM wave functions containing terms from the 
asymptotic polynomial for the Whittaker function, propor-
tional to r{n} – 1, yield more accurate values of radial integrals 
than the rapidly decreasing FMP functions (proportional to 
rn – 1). Here {{n} = n – [n] is the fractional part of the number 
n, and [n] is the integer. The results of numerical calculations 
performed in the QDM approximation for the lifetimes sp

nlt = 
1/ sp

nlG  of Rydberg states with principal quantum numbers n = 
20 – 350 using formula (1) for the widths are approximated by 
expressions of the form
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Table  1.  Lifetimes of the excited nS, nP3/2, nD5/2, and nF7/2 states with 
the maximum total angular momentum J = l + 1/2 in Rb atoms, 
calculated in the QDM approximation, in comparison with the data 
obtained by the FMP method and with the most reliable data compiled 
in the information system [14].

State
Lifetime/ns

QDM FMP [14]

6S 52.6 77.4 50

7S 102.3 134.8 95

8S 191.6 235.6 160

9S 329.7 386.7 290

10S 527.2 597.5 450

5P3/2 26.05 25.1 27

6P3/2 91.3 98.4 120

7P3/2 198.1 210.2 240

8P3/2 354.2 371.2 440

9P3/2 570.2 595.5 730

10P3/2 855.3 895.5 1100

4D5/2 85.2 91.8 80

5D5/2 214.1 753.2 238.5

6D5/2 207.8 1811.2 238

7D5/2 257.4 2549.5 331

8D5/2 339.6 3348.4 434

9D5/2 450.4 4368.8 596

10D5/2 590.6 5659.5 806

4F7/2 55.03 42.8 55

5F7/2 101.3 80.9 100

6F7/2 168.9 136.3 165

7F7/2 262.2 212.5 250

8F7/2 385.4 313.1 365
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taking into account the asymptotic dependence on the princi-
pal quantum number, spnlt  µ n3.

The numerical values of the coefficients tl
(i) (i = 0, 1, 2) of 

the polynomial in (2) listed in Table 3 in powers of the recip-
rocal principal quantum number 1/n are determined by the 
standard method of polynomial interpolation of the values of 
the function sp

nlt (n) at n = 20, 60, 120 (see, for example, [16]). 
Comparison with the results obtained using formula (1) 
shows that the relative error of the approximation values (2) 
does not exceed 1 % in the region 20 < n < 120. In the regions 
below (15 < n < 20) and above (120 < n < 350) of the inter-
polation area, the error does not exceed 2 % – 3 %.

Numerical calculations show that the use of a cubic or 
higher (fourth, fifth, and so on) order of the approximating 
polynomial in (2) does not lead to a decrease in the approxi-
mation error. Therefore, we restrict ourselves to the most effi-
cient quadratic approximation.

3. Interaction energy of BBR  
with the Rydberg atom

Obviously, when measuring the lifetime of an excited state, 
the atom is influenced by the ubiquitous thermal radiation 
(BBR) of the environment, produced by objects that have a 
non-zero temperature T. Under the influence of the BBR 
field, the energy levels experience a shift and broadening due 
to the dynamic Stark effect. The effects of shift and broaden-
ing of the bound energy level can be quantitatively deter-
mined using the general expression for the energy of interac-
tion with the BBR [17, 20 – 23]
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where m and m' are magnetic quantum numbers; m is the pro-
jection of the electric dipole moment operator; e is the state 
energy in the continuous spectrum; and
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is a function introduced by Farley and Wing [17], which takes 
into account the integration of the thermally induced dynamic 
Stark shift over the BBR frequency spectrum described by the 
Planck distribution.

The asymptotic expression for the energy (3) of an atom in 
the Rydberg state |nl ñ with a large value of the principal quan-
tum number n and an arbitrary orbital angular momentum l 
can be written as [17 – 19]
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where EBBRnl  is expressed in kHz. The real part of this expres-
sion, obtained from (3) in the limit Z2/(n2kBT ) ® 0, deter-
mines the thermally induced shift e0 (T ) = p(kBT )2/(3c3), and 
the imaginary part is the broadening of the energy level 
G0(T ) = 4Z2kBT/(3c3n2). Note that the shift e0 (T ) is the same 
for all Rydberg states satisfying the condition Z2/n2 <<  
kBT and does not depend on either the principal n or the 
orbital quantum numbers l. The imaginary part [broadening 
G0 (T )] depends only on n and does not depend on the 
orbital quantum number. Dependences on n and l appear 
only in corrections to the asymptotic expression (5), which 
are represented as an expansion in powers of a small 
parameter  h = Z2/(n3kBT ) [21].

The calculation of corrections to the asymptotic expres-
sion (5) for atoms in Rydberg states with small orbital 
momenta (l £ 3) must be started with an investigation of the 
analytic properties of function (4). The singularity of the inte-
grand indicates the complexity of this function, which corre-
sponds to the complexity of energy (3). To isolate the real and 
imaginary parts, it suffices to use the Sokhotski – Plemelj the-
orem written using generalised functions in the form

Table  2.  Lifetimes of the excited nS, nP3/2-, nD5/2, and nF7/2 states in 
Cs atoms, calculated in the QDM approximation, in comparison with 
the results obtained by the FMP method and with the most reliable 
data compiled in the information system [14].

State
Lifetime/ns

QDM FMP [14]

7S 58.1 89.6 55

8S 109.5 150.9 100

9S 199.9 258.2 170

10S 337.3 417.9 280

11S 537.1 643.1 450

6P3/2 30.0 28.9 30

7P3/2 105.8 82.3 135

8P3/2 234.2 161.0 320

9P3/2 419.6 274.8 600

10P3/2 671.3 433.7 1200

5D5/2 1344.7 1026.9 1150

6D5/2 60.6 622.3 60

7D5/2 83.6 621.0 95

8D5/2 122.8 780.6 150

9D5/2 183.8 1123 240

10D5/2 260.7 1542 350

4F7/2 53.2 30.1 50

5F7/2 95.7 55.7 85

6F7/2 157.9 93.2 140

7F7/2 245.0 145.3 220

8F7/2 360.3 214.1 320

Table  3.  Coefficients of the quadratic polynomial of the asymptotic 
approximation (2) for the natural lifetimes of the nS, nP3/2, nD5/2 , and 
nF7/2 Rydberg states in rubidium and caesium atoms.

Atom Series tl
(0)/ns tl

(1) tl
(2)

Rb

nS 1.4854 –1.5379 –93.390

nP3/2 1.5251 –2.8479 –26.835

nD5/2 0.41793 10.585 –101.88

nF7/2 0.70945 0.063801 3.3892

nS 1.6263 –8.5518 –18.887

Cs
nP3/2 1.3394 –1.5699 –51.421

nD5/2 0.34250 1.0137 –54.749

nF7/2 0.67003 0.36313 –3.3485
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where P is the principal value of the Cauchy integral and d(x 
– y) is the Dirac delta function. Let us isolate the real and 
imaginary parts of function (4), first transforming it to the 
form
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By summing over the magnetic quantum numbers m' and 
over the projections m of the electric dipole moment operator 
in (3), we can obtain the following expressions for the 
BBR-induced shift ( ) ( )ReT E TBBR BBR

nl nle = 6 @ and the broad-
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The summation over the set of bound states with principal 
quantum numbers n' in these expressions also implies integra-
tion over the states of the continuous spectrum with positive 
energy e > 0, which is explicitly shown in formula (3). The 
first term in curly brackets in expression (10) for the shift 
allows one to use the rule of summation of oscillator strengths 
and obtain the value of the real part e0 (T ) of the asymptotic 
formula (5).

However, the linear term in (8) ensures the accuracy of at 
least four decimal places of the real part Re [F (y)] only for 
| y | < 0.05. The cubic term can be taken into account using, 
for example, the integral representation of the logarithmic 
derivative of the gamma function y(x) = d{ln[G (x)]}/dx [23], 
which can be written as a series [24, 25]:
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Here g = 0.5772156649 is Euler’s constant. The convergence 
of the series in this expression strongly depends on the numer-

ical value of the parameter x = | y | /2p, so that for x > 1 the 
complexity of determining the numerical value of the series 
exceeds the complexity of direct calculation of the integral in 
(7). However, if we single out the first terms by limiting the 
summation index to an integer k0 >>  | x |,
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then the remaining part of the series, represented by the sec-
ond term S', converges no worse than the series
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To estimate this term, summation can be replaced by integra-
tion:
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Substituting expressions (12) – (14) into (8), we obtain
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Numerical calculation shows that the accuracy of this 
expression decreases as the parameter x increases. 
Nevertheless, despite a significant decrease in the number of 
significant digits of the terms inside the square bracket (more 
than five digits), then in the curly bracket (five more digits), 
for y £ 25, expression (15) yields a numerical value of the 
function Re [F (y)] with an error of less than 1 %. In practical 
calculations of the real part of energy (10), to determine the 
numerical values of function (8), it is advisable to use expres-
sion (15) only in the range of numerical values of the argu-
ment | y | < 10, where it can be accurate to at least five deci-
mal places. In this case, the numerical value of the parameter 
x is limited by the relation x < 2, and it is sufficient to limit 
the values of the parameter k0 in formulae (13) – (15) by the 
condition k0 < 10. In the region | y | < 40, the accuracy of the 
fifth decimal place of the function Re [F (y)] can only be 
obtained by numerical integration in the second term of 
expression (8). For | y | > 40, the accuracy of five decimal 
places is provided by the first four terms of the asymptotic 
expansion in a series in odd powers of the inverse argument 
1/y [20]:
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where B2p + 4 are the Bernoulli numbers [25].
To calculate the BBR-induced broadening of energy lev-

els, expression (11) can be conveniently represented as
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where | | /( )y k TBn nw= l . Using the expansion in a power 
series with Bernoulli coefficients Bk for the function  
( ) /( )expf y y y 1= -  [25]
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we obtain an explicit expression for the thermally induced 
width, taking into account the corrections to the asymptotic 
value (5) depending on the quantum numbers n, l, and tem-
perature T:
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Here, the first term in square brackets corresponds to the first 
term from expansion (18), which, after summing over the 
entire set of atomic states, including the integral over the 
states of the continuum, yields an asymptotic expression for 
the imaginary part from formula (5):
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The second term in (19), which corresponds to the second 
term in expansion (18), yields a temperature-independent 
expression, which exactly coincides with expression (1) for the 
spontaneous width with a negative sign, sp

nlG-  [21]. Thus, the 
total decay rate of the Rydberg atom, ( ) ( )T Ttot BBR

nl nlG G=  
sp
nlG+ ,  which is the only one that can be measured in practice, 

contains only terms that depend on T, since sp
nlG  is compen-

sated by the second term from expression (19). Note that this 
is the only term with an odd power of the transition frequency 

|| n n
3w l . All subsequent terms of the series in (19) contain only 

even powers of frequencies n n
k2 2w +
l . The result of their summa-

tion over the complete set of states |n l Hl l  can be formally 
called the oscillator-strength moment sum rules [22].

However, for states with a small orbital momentum l, the 
use of sums of moments with the exponent k > l turns out to 
be impossible due to the divergence of the corresponding 
sums over the states |n l Hl l . The explicit form of expansion 
coefficients (18) indicates a rapid decrease in the terms of the 

infinite series with Bernoulli coefficients in (19) at BBR tem-
peratures T > 100 K. In practice, the term with k = 1 is quite 
sufficient to estimate the correction to the broadening G0 (T ) 
of states with moments l ³ 1. In fact, the terms of the infinite 
series in (17) with large values of the argument of the function 
f (y) are exponentially small, so that the use of expansion (18) 
for y > 1 becomes impractical. Thus, the presence of the fac-
tor f (y) ensures a rapid convergence of the series in (17) for 
any values of the orbital angular momentum l.

4. Contribution of the continuous spectrum  
to the thermally induced shift and broadening  
of Rydberg states with small orbital momenta

Infinite sums of expansions over complete sets of atomic 
eigenstates for BBR-induced shifts (10) and broadenings (11) 
of energy levels include integrals over continuum states with 
positive energy. In contrast to states with large orbital 
momenta, in which the contribution of the continuum is 
exponentially small [26], the contribution of integrals over the 
continuous spectrum for states with small orbital momentum 
(l <<    n) can be significant. The integrands of such integrals can 
be expressed in terms of the photoionisation cross section 
snl (w), for which the frequency dependence of BBR photons 
can be written in the semi-classical approximation [27] as 
snl (w) » || /E /th

nl nl
7 3s w , where  ( )| | |

th
nl nl Enls s w= w=  is the thresh-

old cross section, and |Enl  | is the binding energy of the 
Rydberg state, which makes it possible to obtain closed ana-
lytical expressions for the integrals. In particular, for the shift

( )Tcont
BBRe  » 

3( )
( )d

c

k T

18 | |

B
nl

E2

2

nlp
s w wy  » 

24

( )
| |

c

k T
EB th

nl nl2

2

p
s 	 (20)

quantities th
nls  and |Enl  | determine the contribution of the con-

tinuum to the broadening, which represents the ionisation 
probability [17]

( )Tion
nlG  » 

( )
| |

c

k T
E

3 B th
nl nl2

2

p
s . 	 (21)

Thus, in the general expressions for shift (10) and broad-
ening (11) of states with large principal quantum numbers 
and low binding energy, satisfying the relation | Enl | <<  kBT, it 
suffices to take into account only the sums over the states of 
the discrete spectrum, and replace the integrals over the con-
tinuum with expressions (20) and (21), respectively. An 
important characteristic in these expressions is the threshold 
ionisation cross section. The numerical values, as well as the 
parameters of the approximation formulae for simplified esti-
mates of th

nls  for the nS, nP, and nD series of Rydberg states of 
alkali atoms, were obtained by the FMP method in [28]. In 
the present work, the numerical values of th

nls  for the nS, nP, 
nD, and nF series of Rydberg states of Rb and Cs atoms with 
principal quantum numbers n = 20 – 300 are calculated within 
the framework of the QDM. The values of the radial matrix 
elements of electric dipole transitions from the Rydberg state 
to the threshold state with zero energy are determined using 
the limiting relation

G| 0, | | | | ( ) | , | | |liml r nl n n l r nln
2 3 2H G He = = "3l l l ll .

Coefficients of a polynomial of asymptotic approxima-
tion quadratic in powers of 1/n
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1s n
s

n

s( )
( ) ( )

th
nl l

l l0
1

2

2

s = + +e o 	 (22)

are obtained by the standard method of polynomial interpo-
lation with respect to the given values of function (22). 
Numerical values of the coefficients s ( )l

i   (i = 0, 1, 2) for the nS, 
nP, nD, and nF series of Rydberg states of Rb and Cs atoms, 
interpolated from the values of the threshold cross sections 
for the states with n = 20, 60, 120 are given in Table 4. It 
should be noted that similar interpolation formulae from [28] 
are in good agreement with the results of calculations of th

nls  
using formula (22) with the parameters taken from Table 4. 
As for the spontaneous lifetime (2), the use of higher-order 
polynomials instead of quadratic polynomials does not reduce 
the approximation errors. Numerical calculations confirm 
the optimality of approximations (2) and (22) by second-
order polynomials with coefficients taken from Tables 3 and 
4, respectively.

5. Conclusions

In this work, new information is obtained about the effect of 
thermal radiation on the shift and broadening of the energy 
levels of the nS, nP, nD, and nF series of Rydberg states in 
rubidium and caesium atoms. Analytical expressions for the 
cubic term of the Farley – Wing function (7) make it possible 
to calculate corrections to the asymptotic formulae for ther-
mally induced broadening and shift, which depend on the 
BBR temperature, on the principal and orbital quantum 
numbers of the Rydberg state, and also to determine the accu-
racy and limits of applicability of the linear approximation 
for function (7). The threshold photoionisation cross sections 
th
nls  are calculated and an approximate asymptotic formula is 
obtained for simplified estimates of the numerical values of 
th
nls  needed to determine the contribution of the integral over 
the continuous spectrum (20) to the shift, as well as the contri-
bution of the photoionisation rate (21) to the broadening of 
the energy levels (11) of the small-angular-momentum 
Rydberg states.

Thus, we can list the following main results of this work:
– approximation formula (2) and numerical values of the 

coefficients of the quadratic polynomial are obtained (see 
Table 3) for quick estimates of the natural lifetime of the 
Rydberg states of rubidium and caesium atoms;

– formulae (10) – (16) are derived for BBR-induced shifts, 
as well as broadenings (19), taking into account corrections to 

the asymptotic expression (5), depending temperature T, 
principal n and orbital l quantum numbers; and

– the contributions of the states of the continuous spec-
trum to the BBR-induced shifts (20) and broadening (21) of 
the Rydberg states are expressed in terms of the threshold 
ionisation cross sections, represented by the asymptotic rela-
tion (22) with the coefficients of the approximation polyno-
mial given in Table 4.
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