МОДУЛЯЦИЯ СВЕТА

Широкоапертурный жидкокристаллический электрооптический модулятор излучения лазера на окиси углерода

А.В.Кузнецов, А.А.Жукович-Гордеева, Ю.М.Климачев, А.В.Казначеев, А.Ю.Козлов, М.В.Минченко, О.А.Рулев, Д.В.Синицын, Е.П.Пожидаев, А.А.Ионин

Разработаны жидкокристаллические электрооптические модуляторы излучения среднего ИК диапазона, позволяющие при световой апертуре до 2.5 см² управлять состоянием поляризации излучения СО-лазера в диапазоне длин волн 5.1–5.6 мкм. Использование сегнетоэлектрического жидкого кристалла в качестве электрооптической среды, расположенной между скрещенными поляризатором и анализатором, позволило обеспечить термически устойчивую электрооптическую модуляцию излучения СО-лазера с частотой от 1 до 10 кГц при контрастном отношении от 15:1 до 25:1. Обеспечены режимы электроуправляемых полуволновой и четвертьволновой пластинок с временами переключения состояний поляризации от 20 до 50 мкс, а также возможность запоминания полученного состояния поляризации после выключения управляющего напряжения. Минимальное время переключения состояний поляризации составило 1.4 мкс, которое наблюдалось при частоте модуляции 40 кГц и повороте оптической оси жидкого кристалла на угол в несколько градусов, что приводило к уменьшению контрастного отношения до 1.3:1.

Ключевые слова: жидкокристаллический электрооптический модулятор, сегнетоэлектрический жидкий кристалл, CO-лазер.

1. Введение

Когерентные источники излучения среднего ИК диапазона представляют большой интерес для широкого круга научных и технологических приложений. Такими источниками являются хорошо отработанные в техническом плане электроразрядные лазеры на окиси углерода (СО-лазеры). Из большого числа различных конструкций данных молекулярных лазеров наиболее компактными являются планарные установки с высокочастотной (ВЧ) накачкой [1]. ВЧ СО-лазеры могут работать как в непрерывном режиме генерации [2, 3], так и в импульснопериодическом [4, 5]. Излучение ВЧ СО-лазеров применяется для обработки стекла и керамики [1], в производстве изделий микроэлектроники [6], для создания оптических волокон [7, 8], а также в производстве микрофлюидных систем [9, 10].

СО-лазер имеет наиболее широкий спектр генерации из всех газоразрядных лазеров как в непрерывном, так и в импульсном режиме генерации [11]. Он может работать на сотнях узких спектральных линий как основной полосы генерации от 4.7 мкм [11] до 8.7 мкм [12] с КПД до 50% [11], так и обертонной ($\lambda = 2.5-4.2$ мкм) [13] с КПД до 16% [14]. Необходимо отметить, что режим модуляции добротности резонатора (МДР) СО-лазера позволяет получать наибольшее число линий генерации в одном микросекундном импульсе при пиковых мощностях до не-

e-mail: klimachevym@lebedev.ru

А.В.Казначеев. Институт элементоорганических соединений им. А.Н.Несмеянова РАН, Россия, 119991 Москва, ул. Вавилова, 28

Поступила в редакцию 30 сентября 2024 г., после доработки – 11 но-ября 2024 г.

скольких киловатт [15, 16]. Именно этот режим наиболее эффективен для расширения и обогащения спектров излучения ВЧ СО-лазеров за счет преобразования в нелинейных кристаллах (см., напр., обзор [17]). Однако если на данный момент режим МДР в ВЧ СО₂-лазерах реализован за счет использования компактного акустооптического [18] или электрооптического модулятора [19], то для ВЧ СО-лазеров этот вопрос решен только с помощью внешнего оптического резонатора с вращающимся зеркалом [20, 21].

В связи с этим цель настоящей работы заключается в разработке малогабаритных электрооптических модуляторов среднего ИК диапазона с толщиной менее миллиметра, но при этом с большой световой апертурой (не менее 2 см²), позволяющих в микросекундном временном диапазоне изменять фазовый сдвиг на π/2 (четвертьволновая пластинка) и на π (полуволновая пластинка) при килогерцевых частотах модуляции. Известно, что указанные параметры электрооптической модуляции обеспечиваются в видимом диапазоне спектра при использовании смектических С* сегнетоэлектрических жидких кристаллов (СЖК) [22-24] в качестве рабочих сред модуляторов, но данные об электрооптике СЖК в среднем ИК диапазоне в известных нам литературных источниках отсутствуют. Восполнение указанного пробела с целью выбора сегнетоэлектрического жидкого кристалла (из разработанных ранее авторами) для электрооптики среднего ИК диапазона – одна из задач этой работы.

2. Жидкокристаллические ячейки для электрооптических модуляторов среднего ИК диапазона

Как известно, частота электрооптической модуляции всегда ограничена сверху диэлектрическими потерями, причиной которых являются токи переполяризации в ра-

А.В.Кузнецов, А.А.Жукович-Гордеева, Ю.М.Климачев, А.Ю.Козлов, М.В.Минченко, О.А.Рулев, Д.В.Синицын, Е.П.Пожидаев, А.А.Ионин. Физический институт им. П.Н.Лебедева РАН, Россия, 119991 Москва, Ленинский просп., 53;

бочей среде модулятора любого типа, что приводит к его разогреву, сопровождающемуся термическими неустойчивостями. Предельная частота устойчивой электрооптической модуляции определяется из решения стационарной тепловой задачи о распределении температуры T в структуре модулятора [25]. В то время как в работе [25] эта задача решена для излучения видимого диапазона, в настоящей работе она теоретически и экспериментально решена авторами для случая электрооптического модулятора среднего ИК диапазона на основе СЖК, что позволило обеспечить его термическую устойчивость и, соответственно, воспроизводимость и устойчивость параметров модуляции при частотах электрооптического отклика до 10 кГц.

2.1. Методика изготовления жидкокристаллических электрооптических ячеек и измерение их пропускания в среднем ИК диапазоне

Любой жидкокристаллический электрооптический модулятор состояния поляризации излучения представляет собой жидкокристаллическую ячейку (ЖКЯ), расположенную между поляризатором и анализатором. Механическая конструкция ЖКЯ состоит из двух плоских токопроводящих и прозрачных в заданном спектральном диапазоне подложек, плоскости которых параллельны одна другой, а расстояние d между ними задается калиброванными диэлектрическими прокладками (спейсерами), определяющими толщину слоя жидкого кристалла (ЖК) между подложками. В качестве подложек были выбраны пластины кремния размером 24 × 18 мм при толщине 0.4 мм, прозрачные в среднем ИК диапазоне, а их поверхностное сопротивление составляло около 15 кОм/см². При сборке ЖКЯ использовались спейсеры двух типов: калиброванная тефлоновая пленка толщиной 10 мкм и калиброванные стеклянные шарики диаметром 18 мкм. Для формирования монодоменной структуры СЖК в пространстве между подложками на поверхности кремниевых пластин наносились слои ориентирующего полимера – полиимида ПМДА-ОДА [26] толщиной около 40 нм, которые натирались батистом для придания анизотропии поверхности подложки, находящейся в контакте с жидким кристаллом.

Сборка ЖКЯ выполнялась в чистой комнате класса 1000. Физико-химические и технологические характеристики этого процесса, а также соответствующая контрольно-измерительная аппаратура детально описаны в работах [27, 28]. Склейка кремниевых пластин после сборки ЖКЯ осуществлялась эпоксидным клеем. Величина зазора *d* между пластинами определялась по измеренной электрической емкости изготовленной структуры как плоского конденсатора.

Для сборки ЖКЯ использовались также подложки из BaF₂, прозрачные в видимом и среднем ИК диапазонах, что необходимо как для визуального контроля оптического качества слоя СЖК в ячейке, так и для измерения спектра пропускания ЖКЯ в ИК диапазоне. Однако диэлектрические пластины BaF₂ нельзя было использовать в качестве подложек электрооптического модулятора, т. к. их поверхностное сопротивление крайне велико.

Зазор между подложками под действием капиллярных сил заполнялся сегнетоэлектрическим смектическим С* жидким кристаллом СЖК-497 (название по внутренней номенклатуре ФИАНа), разработанным авторами ранее; его химическая структура и молекулярное строение приведены в работе [28]. Выбор этого СЖК в качестве рабочей среды электрооптического модулятора обусловлен следующими факторами.

1. СЖК-497 имеет окно прозрачности в среднем ИК диапазоне в спектральном интервале 3.6–5.65 мкм, перекрывающее спектр излучения используемого в эксперименте широкополосного СО-лазера (5.1–5.6 мкм) (рис.1).

2. Этот СЖК – негеликоидальный сегнетоэлектрический жидкий кристалл [29], обеспечивающий возможность формирования одинакового во всем объеме ЖК пространственного положения оптической оси, т. е. оптически однородной структуры [27, 30]. Кроме того, именно в негеликоидальных СЖК могут (при определенных условиях) наблюдаться эффекты бистабильности и мультистабильности [31], позволяющие запоминать любое состояние поляризации света (или светопропускания, если ЖКЯ находится между скрещенными поляроидами) после выключения управляющего напряжения.

3. Термодинамически устойчивая (энантиотропная) сегнетоэлектрическая смектическая С*-фаза СЖК-497 находится в температурном интервале 3–63°С [28], что удобно для практического использования в фотонных устройствах. При охлаждении этого СЖК наблюдается температурный гистерезис, благодаря которому температурный интервал существования фазы С* расширяется до –12°С.

4. Двулучепреломление Δn у СЖК-497 в области спектра излучения СО-лазера (рис.1), как выяснилось в результате проведенных в данной работе экспериментов, испытывает сильную аномальную дисперсию, изменяясь от 0.115 до 0.165, что близко к показателям двулучепреломления для видимой области спектра [32].

Двулучепреломление, как и в работе [32], вычислялось по измеренному пропусканию $T_{\rm LC}$ в области прозрачности слоя негеликоидального СЖК, расположенного между скрещенными поляризатором и анализатором. При этом использовалась известная формула кристаллооптики, которая для негеликоидальных СЖК имеет вид [33, 34]

$$T_{\rm LC} = \sin^2 \left(2(\beta + \alpha) \right) \cdot \sin^2 \left(\pi \Delta n d/\lambda \right), \tag{1}$$

Рис.1. Спектр излучения непрерывного СО-лазера (показан синим цветом), спектр пропускания неполяризованного света ячейкой с подложками из BaF₂, заполненной СЖК-497 при толщине его слоя 1.7 мкм (фиолетовая кривая), а также спектры пропускания ЖКЯ с кремниевыми плоскопараллельными подложками, расположенной между скрещенными поляризатором и анализатором, при ориентации оптической оси СЖК-497 вдоль оси поляризатора ($\beta = 0$) (зеленая кривая) и под углом $\beta = 45^{\circ}$ к оси (красная кривая). Измерения пропускания выполнены на фурье-спектрометре АФ-3.

Рис.2. Взаимное расположение векторов: спонтанной поляризации P_s , директора *n*, нормали *e* к плоскости смектического слоя и проекции *c* директора на плоскость смектического слоя сегнетоэлектрической фазы C* (X – полярная ось, ось Z – нормаль к плоскостям смектических слоев, θ – угол наклона молекул в смектических слоях, φ – азимутальный угол в плоскости смектического слоя (плоскость XY) [24,35]), а также иллюстрация к определению угла α в плоскости подложек ЖКЯ.

где λ – длина волны излучения, падающего на слой СЖК, а β – произвольный начальный угол между плоскостью поляризации падающего линейно поляризованного излучения и оптической осью СЖК в отсутствие приложенного к слою СЖК напряжения. Отметим, что ориентация оптической оси в случае негеликоидального СЖК совпадает с преимущественной ориентацией длинных молекулярных осей, обозначаемой единичным вектором *n*, называемым директором. Символом α обозначена величина изменения (под действием приложенного напряжения) угла между плоскостью поляризации падающего излучения и проекцией директора *n* на плоскость подложек ЖКЯ, как показано на рис.2.

Как известно [22-24], в смектических С* сегнетоэлектрических ЖК существует не только ориентационное упорядочение направлений длинных молекулярных осей вдоль направления *n*, но и трансляционное упорядочение: центры масс молекул самопроизвольно упорядочиваются в слоях, называемых смектическими, а эти слои ограничивают так называемые плоскости смектических слоев (плоскость ХҮ на рис.2, слева). Плоскости смектических слоев, как и директор n, являются удобными и общепринятыми математическими абстракциями для теоретического описания структуры СЖК и переориентации молекул СЖК в электрическом поле. Толщина смектического слоя определяется как расстояние между двумя смектическими плоскостями, которое примерно равно длине молекул и составляет 2.5-3.5 нм, в зависимости от молекулярного строения СЖК и температуры. В целом, структура СЖК представляет собой последовательность мономолекулярных смектических слоев вдоль оси Z, плоскости которых (т.е. плоскости ХҮ) при использовании ориентирующего полимера – полиимида ПМДА-ОДА [30] - и при определенных в работе [30] значениях поверхностного потенциала ориентированы перпендикулярно подложкам ЖКЯ, как показано на рис.2, справа. При выполнении этого условия в каждом смектическом слое выполняется соотношение

$$\alpha = 2 \operatorname{arctg}(\operatorname{tg} \theta \cdot \cos \varphi_1), \tag{2}$$

где *θ* – угол наклона директора и оптической оси СЖК в смектических слоях относительно нормали к плоскостям

смектических слоев; φ_1 и φ_2 – азимутальные углы ориентации директора (и оптической оси) в электрических полях +*E* и –*E* и под действием поверхностных потенциалов W_1 и W_2 соответственно. Формула (2) справедлива в силу симметрии задачи, когда $\varphi_2 = \pi - \varphi_1$.

Для негеликоидальных СЖК значения θ и φ постоянны при фиксированной температуре во всем объеме жидкого кристалла при условии формирования монодоменного слоя СЖК в ЖКЯ, как в работе [27], что обеспечивает постоянство значения угла α во всем объеме ЖК. Это дает возможность использовать соотношение (1), справедливое в монодоменном случае, для экспериментального определения Δn СЖК. Отмеченное обстоятельство было еще одним аргументом в пользу выбора негеликоидального СЖК-497 в качестве рабочей среды электрооптического модулятора.

2.2. Дисперсия двулучепреломления СЖК-497 в среднем ИК диапазоне

Для расчета двулучепреломления СЖК по формуле (1) и измеренным в области прозрачности спектральным зависимостям светопропускания ЖКЯ, расположенной между скрещенными поляризатором и анализатором (см. рис.1), необходимо исключить френелевское отражение на границах раздела «воздух – кремний» и «кремний – жидкий кристалл». Иначе говоря, требуется перенормировка спектра пропускания ЖКЯ на спектр пропускания слоя самого СЖК.

Коэффициент пропускания T_F излучения после прохождения каждой из четырёх имеющихся в ЖКЯ границ раздела сред с разными показателями преломления при нормальном падении излучения определяется френелевским соотношением [36]

$$T_{\rm F} = 4n_i n_j / (n_i + n_j)^2, \tag{3}$$

где n_i и n_j – показатели преломления пограничных сред, в нашем случае воздуха, кремния и жидкого кристалла. В среднем ИК диапазоне показатель преломления кремния равен 3.425, воздуха – 1.000, а для ЖК принимаем в расчет собственную оценку авторами значения показателя преломления $n_0 = 1.453$. Эта оценка основана на сопоставлении коэффициента пропускания $T_{\rm F} = 0.94$ пластины BaF₂ при $\lambda = 4.5$ мкм и коэффициента $T_{\rm F}$ ЖКЯ с подложками из BaF₂. У ЖКЯ коэффициент пропускания также равен 0.94 на той же самой длине волны, что следует из рис.1. Этот результат, в соответствии с формулой (3), может быть только в случае идеальной иммерсии, когда обыкновенный показатель преломления n_0 жидкого кристалла равен показателю преломления $n_{\rm BaF_2} = 1.453 \pm 0.006$ в диапазоне длин волн $\lambda = 3.6-5.6$ мкм [37].

Расчет коэффициента Т_F для ЖКЯ с кремниевыми подложками при последовательном использовании формулы (3) для каждой из границ раздела и при указанных выше значениях показателей преломления дает $T_{\rm F} \approx 0.31$. В эксперименте максимальное значение $T_{\rm F} \approx 0.295$ для ЖКЯ с кремниевыми подложками, расположенной между скрещенными поляризаторами при $\beta = 45^{\circ}$ и $\alpha = 0^{\circ}$, зафиксировано в спектральном интервале 5.3-5.45 мкм при d = 20 мкм (красная кривая на рис.1). Таким образом, предполагая, что наблюдаемый максимум соответствует полуволновой пластинке, т.е. $T_{\rm F} \approx T_{\rm LC}$ (см. формулу (1)), получаем в этом случае превышение расчетного значения T_F над измеренным всего на 5%, что можно объяснить погрешностями измерений, а также светорассеянием на имеющих место пространственных неоднородностях в слое СЖК-497. Некоторое уменьшение измеренного значения $T_{\rm F}$ по сравнению с расчетным может быть обусловлено частичной деполяризацией излучения при светорассеянии. Вклад этого процесса можно оценить по спектру пропускания при $\beta = 0^\circ$ и $\alpha = 0^\circ$: для идеального монодомена $T_{\rm F} \approx T_{\rm LC}$ и должно быть равно нулю, а в реальности $T_{\rm F} \approx 0.035$ (зеленая кривая на рис.1).

С учетом отмеченных погрешностей и полагая, что суммарные потери прошедшего через ЖКЯ излучения в области его прозрачности, связанные с френелевскими отражениями и деполяризацией, составляют 70.5 %, а максимум в спектре пропускания $T_{\rm LC}$ в спектральном интервале 5.3–5.45 мкм наблюдается при $\Delta ndl\lambda \approx 1/2$, восстановим спектр пропускания слоя СЖК-497 (представлен синей кривой на рис.3).

Дисперсия двулучепреломления $\Delta n(\lambda)$, вычисленная из спектральной зависимости светопропускания СЖК-497 в области прозрачности по формуле (1) при $\beta = 45^{\circ}$ и

Рис.3. Спектр пропускания $T_{\rm LC}$ излучения среднего ИК диапазона слоем сегнетоэлектрического жидкого кристалла СЖК-497 толщиной 20 мкм, расположенным между скрещенными поляризатором и анализатором при $\beta = 45^{\circ}$ и $\alpha = 0^{\circ}$ (синяя кривая); дисперсия двулучепреломления Δn того же СЖК в среднем ИК диапазоне излучения (красная кривая).

 $\alpha = 0^{\circ}$, показана на рис.3 красной кривой. Отметим, что в области спектра излучения СО-лазера дисперсия является аномальной, а $\Delta n \approx 0.115 - 0.165$.

3. Нагревание модулятора при приложении к нему переменного напряжения

Нами рассмотрен процесс нагревания модулятора за счет диэлектрических потерь при приложении к нему знакопеременного напряжения. Здесь важно выяснить зависимость температуры модулятора от амплитуды и частоты прикладываемого напряжения, а также от толщины слоя СЖК.

3.1. Теоретическая модель распределения температуры в электрооптической ЖКЯ

Авторы работы [38] решили задачу электрического нагрева нематического ЖК (параэлектрика), однако электрооптическая модуляция при этом не рассматривалась. Нами решена стационарная тепловая задача о распределении температуры *T* в электрооптической ЖКЯ (рис.4) при приложении переменного электрического напряжения.

Для расчета распределения температуры в ЖКЯ записывается уравнение теплопроводности в каждой среде, а его решения должны удовлетворять условиям сшивки на границах. Стационарное уравнение теплопроводности в слое СЖК имеет вид

$$\varkappa_1 \frac{\partial^2 T_1}{\partial x^2} + w = 0, \tag{4}$$

где *w* – удельная мощность тепловыделения; *T*₁ – поле температуры в СЖК. Его решение определяется как

$$T_1 = -\frac{w}{2\varkappa_1} x^2 + A_1 x + B_1.$$
 (5)

В силу симметрии задачи $A_1 = 0$. Для кремния (область II) и воздуха (область III) можно записать стационарные уравнения теплопроводности:

$$\varkappa_2 \frac{\partial^2 T_2}{\partial x^2} = 0, \qquad \varkappa_3 \frac{\partial^2 T_3}{\partial x^2} = 0, \tag{6}$$

Рис.4. Схема ЖКЯ:

I – слой СЖК; II – кремниевые пластины; III – воздух, окружающий ячейку; 2d – толщина слоя СЖК; l – толщина кремния; L – характерная толщина окружающего воздуха, при которой температурные градиенты от нагретой ячейки становятся незначимыми; \varkappa_1 , \varkappa_2 , \varkappa_3 – коэффициенты теплопроводности СЖК, кремния и воздуха соответственно; $T_1(d)$ и $T_2(l+d)$ – температуры на границе СЖК–кремний и кремний–воздух; T_0 – температура окружающей среды.

где T_2 и T_3 – поле температур в кремнии и воздухе. Их решения имеют вид:

$$T_2 = A_2 x + B_2, \quad T_3 = A_3 x + B_3. \tag{7}$$

Для определения коэффициентов B_1 , A_2 , B_2 , A_3 , B_3 используем условия сшивки функций (5) и (7) на границах раздела сред. Эти условия заключаются в непрерывности температуры и тепловых потоков на границах раздела сред, т.е.

$$\begin{cases} T_{1} \mid_{x=d} = T_{2} \mid_{x=d}, \\ \varkappa_{1} \partial T_{1} / \partial x \mid_{x=d} = \varkappa_{2} \partial T_{2} / \partial x \mid_{x=d}, \\ T_{2} \mid_{x=d+l} = T_{3} \mid_{x=d+l}, \\ \varkappa_{2} \partial T_{2} / \partial x \mid_{x=d+l} = \varkappa_{3} \partial T_{3} / \partial x \mid_{x=d+l}, \\ T_{3} \mid_{x=d+l+L} = T_{0}, \end{cases}$$

$$(8)$$

де *L* – характерная толщина окружающего воздуха, при которой температурные градиенты от нагретой ячейки становятся незначимыми. Подстановка функций (5) и (7) в систему уравнений (8) позволяет определить все перечисленные выше коэффициенты.

В наших экспериментах с помощью термопары измерялась установившаяся температура $T_{\rm S}$ на внешней поверхности кремния. Используя найденные значения коэффициентов, находим эту температуру:

$$T_{\rm S} = T_2(d+l) = T_0 + \frac{wdL}{\varkappa_3}.$$
 (9)

Для работы модулятора важное значение имеет не температура на его границах, а температура $T_{\rm C}$ в центре СЖКслоя (x = 0), которая имеет наибольшее значение и определяет качество его работы. Используя функцию (5) и найденные значения B_1 , A_2 , B_2 , A_3 , B_3 находим связь температуры $T_{\rm C}$ с температурой на границе $T_{\rm S}$:

$$T_{\rm C} = 2T_{\rm S} - T_0 + (T_{\rm S} - T_0) \left[2\frac{\varkappa_3}{\varkappa_2} \frac{l}{L} + \frac{\varkappa_3}{\varkappa_1} \frac{d}{L} \right],\tag{10}$$

где T_0 – обозначенная на рис.4 температура окружающей ЖКЯ среды.

Из формулы (9) следует, что температура $T_{\rm S}$ должна увеличиваться с увеличением толщины d слоя СЖК по линейному закону. Это было экспериментально установлено в работе [25], где в качестве граничных поверхностей использовались стекла.

Для расчета зависимости температуры $T_{\rm C}$ от частоты поля f и его амплитуды E_0 необходимо знать зависимость *w* от этих величин. В наших экспериментах к СЖК-слою прикладывалось знакопеременное двухуровневое (+ E_0 ; $-E_0$) и трехуровневое (+ E_0 ; 0; - E_0) прямоугольное напряжение (рис.5). Трехуровневые импульсы используются с целью уменьшения нагревания СЖК-модулятора при приложении к нему высокочастотного напряжения. Период прикладываемого напряжения Δt складывается из двух времен Δt_1 – времени действия положительного и отрицательного импульсов, когда выделяется тепло, и двух времен Δt_2 отсутствия напряжения: $\Delta t = 2(\Delta t_1 + \Delta t_2)$. Из этого выражения можно выразить время Δt_1 через частоту f прикладываемого напряжения: $\Delta t_1 = \frac{1}{2}f(1 + k)$, где $k = \Delta t_2 / \Delta t_1$ – доля времени, в течение которого тепло не выделяется. Случай приложения двухуровневого пря-

Рис.5. Форма одного периода импульса приложенного к СЖК знакопеременного трехуровневого прямоугольного электрического поля с амплитудой E_0 (сплошная линия) и токов переполяризации СЖК с амплитудой J_{p0} (штриховые кривые). Двухуровневый импульс является частным случаем трехуровневого импульса при $\Delta t_2 = 0$.

моугольного напряжения соответствует k = 0. В течение времени Δt_1 в слое СЖК возникает ток переполяризации J_p , изменяющийся по экспоненциальному закону: $J_p = J_{p0} \exp(-t/\tau)$, где τ – время релаксации тока. Тогда удельная мощность w, выделяющаяся в ЖК-слое за счет протекания тока переполяризации, имеет вид

$$w = 2f \int_{0}^{t_{1}} E_{0} J_{p0} \exp(-t/\tau) dt = 2J_{p0} E_{0}(\tau f)$$
$$\times \{1 - \exp[-\frac{1}{2}(\tau f)(1+k)]\}, \qquad (11)$$

где J_{p0} – начальная плотность тока переполяризации.

Так как $J_{p0} \sim E_0$, то $w \sim E_0^2$. Таким образом, измеренная температура T_S ЖКЯ должна зависеть квадратично от напряженности поля. Из формулы (11) следует, что введение трехуровневого импульса, как и следовало ожидать, приводит к уменьшению тепловыделения w и, соответственно, T_C . Зависимость T_S от квадрата напряженности поля была экспериментально установлена в работе [25], где в качестве граничных поверхностей использовались стекла, а в качестве управляющего напряжения – знакопеременное двухуровневое прямоугольное напряжение.

3.2. Результаты измерения температурных зависимостей параметров СЖК-497

Для измерения температурных зависимостей параметров (спонтанной поляризации P_s, вращательной вязкости γ_{ω} , угла наклона θ директора относительно нормали к плоскости смектического слоя) СЖК-497 были использованы известные методики. Угол наклона θ измерялся по положению оптической оси СЖК относительно плоскости поляризации зондирующего излучения в соответствии с работой [33]. Вращательная вязкость γ_{ϕ} определялась по методу, предложенному в работе [35], спонтанная поляризация $P_{\rm s}$ – по методу интегрирования токов переполяризации на внешнем калиброванном конденсаторе, обоснованному в работе [39]. Все перечисленные параметры СЖК необходимы для определения условий термически устойчивой электрооптической модуляции, т.е. для определения стационарной температуры T_C в центре слоя ЖК при заданных значениях частоты модуляции и величины фазового сдвига.

Рис.6. Зависимости угла наклона θ директора относительно нормали к плоскости смектического слоя (*a*), вращательной вязкости γ_{φ} и спонтанной поляризации $P_{s}(\delta)$ от температуры T_{0} , измеренные для СЖК-497 и f = 20 Гц при использовании знакопеременного двухуровневого управляющего напряжения, прикладываемого к ЖКЯ. Ошибки измерения укладываются в размеры маркеров.

Температурные зависимости перечисленных выше параметров СЖК измерялись при низкой частоте (f = 10-20 Гц) приложенного к ЖКЯ управляющего напряжения, что позволяло полностью избежать разогрева ячейки токами переполяризации, как следует из соотношения (11). Жидкокристаллические ячейки располагались в специально сконструированной термокамере, температура внутри которой регулировалась с точностью ± 0.1 °C, от -10 °C до 120 °C, задавая путем внешнего нагрева температуру T_0 слоя СЖК. При этом разогрев ЖКЯ из-за диэлектрических потерь не наблюдался вследствие низкой частоты f управляющего напряжения. Результаты измерений представлены на рис.6.

При повышении частоты управляющего напряжения до килогерцевой области ЖКЯ разогреваются вследствие диэлектрических потерь, объемная плотность энергии w которых возрастает при повышении частоты f в соответствии с соотношением (11). По этой причине температура $T_{\rm C}$ в центре ЖКЯ становится больше температуры T_0 окружающей среды (рис.7).

Температура $T_{\rm C}$ в центре слоя СЖК определялась экспериментально путем сопоставления измеренной на частоте 20 Гц температурной зависимости спонтанной по-

Рис.7. Зависимости температуры $T_{\rm C}$ в центре ЖК-ячейки от частоты приложенного напряжения: измеренная (точки) при $T_0 = 25$ °C, $E_0 = 7.5$ В/мкм, d = 10 мкм и расчетная (сплошная линия), полученная на основании формул (9)–(11) при k = 0, а также измеренная зависимость $P_{\rm s}(f)$ для той же ячейки при температуре $T_0 = 25$ °C. Подложки ячейки – кремний толщиной 0.4 мм. Ошибки измерения $P_{\rm s}(f)$ укладываются в размеры маркеров.

ляризации $P_s(T_0)$, показанной на рис.6, с измеренной частотной зависимостью спонтанной поляризации $P_s(f)$ при $T_0 = 25 \,^{\circ}\text{C}$ (рис.7). Наблюдаемая в эксперименте зависимость $P_{s}(f)$ является проявлением нагрева СЖК токами переполяризации, т. к. спонтанная поляризация, являющаяся термодинамическим параметром сегнетоэлектриков, не может зависеть от частоты f, а зависит только от температуры [40], до которой разогревается слой СЖК вследствие диэлектрических потерь в килогерцевом диапазоне частот. Поясним получение зависимости, приведенной на рис.7, следующими примерами. При $T_0 = 25$ °C и f = 300 Гц измеренное значение $P_s =$ 85 нКл/см², как на рис.6 при f = 20 Гц и $T_0 = 25$ °C. Следовательно, диэлектрические потери при f = 300 Гц пренебрежимо малы, т.е. $T_{\rm C} = T_0$ при f = 300 Гц (первая точка слева на рис.7). При $T_0 = 25$ °С и f = 1 кГц измеренное значение $P_{\rm s} = 78$ нКл/см², что соответствует температуре 33 °С на рис.6, б, т.е. на частоте 1 кГц диэлектрические потери разогревают слой СЖК до $T_{\rm C}$ = 33 °C (шестая точка слева на рис.7). При $T_0 = 25 \,^{\circ}\text{C}$ и $f = 10 \,\text{к}\Gamma\text{ц}$ измеренное значение $P_{\rm s} = 48 \ {\rm нK} {\rm л/cm}^2$, что соответствует температуре 54°C на рис.6,6. Таким образом, при $T_0 =$ $25 \,^{\circ}\text{C}$ и f = 10 кГц диэлектрические потери разогревают слой СЖК до $T_{\rm C} = 54$ °C (третья точка справа на рис.7).

Теоретический расчет зависимости $T_{\rm C}(f)$ (рис.7) выполнялся по формулам (9), (10) и (11) для случая k = 0. Коэффициенты теплопроводности для воздуха $\kappa_3 =$ 0.0026 Bt/(м·K) и для кремния $\varkappa_2 \approx 135$ Bt/(м·K) взяты из справочника [41] при температуре 45 °C, т. к. эта температура соответствует примерно середине интервала между температурой фазового перехода из сегнетоэлектрической в параэлектрическую фазу (рис.6) и температурой T_0 , а коэффициенты \varkappa_2 и \varkappa_3 зависят от температуры, т.е. изменяются в процессе разогрева электрооптического модулятора токами переполяризации. Коэффициент и1 для жидких кристаллов зависит не только от температуры, но и от ориентации молекул СЖК относительно подложек, а также от напряженности электрического поля [42]. Принимая во внимание эти обстоятельства, мы использовали для расчета зависимости $T_{\rm C}(f)$ среднее по результатам работы [42] значение $\varkappa_1 \approx 0.2$ Вт/(м·К). Использование средних значений коэффициентов и вместо весьма трудоемкого учета температурных зависимостей этих коэффициентов объективно снижало точность сопоставления результатов расчета с данными эксперимента. Тем не менее измеренные и расчетные значения $T_{\rm C}(f)$ совпадают с точностью $\pm 5\%$ (рис.7), если в соотношениях (9) и (10) $L \approx 2.5$ мм, т.е. температурные градиенты перестают быть значимыми на расстоянии около 2.5 мм от разогретых токами переполяризации подложек ЖКЯ. Правдоподобность значения параметра L подтверждена экспериментально: измеренная термопарой температура воздуха на расстоянии 3 мм от нагретой подложки такая же, как и в помещении.

Из рис.7 следует, что термическая устойчивость рассматриваемого модулятора уверенно обеспечивается при $T_0 = 25 \,^{\circ}$ С, знакопеременном двухуровневом управляющем напряжении с частотой 10 кГц и $E_0 = 7.5$ В/мкм. При этих условиях угол наклона $\theta \approx 22.5^{\circ}$, а стационарная температура слоя СЖК в модуляторе составляет 54 °С, что на 10° ниже температуры перехода СЖК-497 в параэлектрическую фазу А* [28].

4. Жидкокристаллические электрооптические модуляторы среднего ИК диапазона

4.1. Оптическая схема модуляции излучения СО-лазера

Оптическая схема экспериментов по модуляции излучения СО-лазера с помощью электрооптической ячейки на основе СЖК-497 приведена на рис.8. Эксперименты проводились с использованием непрерывного криогенного СО-лазера, возбуждаемого разрядом постоянного тока, конструкция которого подробно описана в [43]. Газовая смесь He: N₂: CO: воздух = 140:11:2:1 медленно прокачивалась через лазер при давлении 7.7 Торр. Активная среда СО-лазера возбуждалась от блока питания ИЛГН-706. Напряжение на трубке поддерживалось около 9 кВ при токе 7 мА. Резонатор состоял из полностью отражающего сферического зеркала 1 (радиус кривизны R = 9 м) и диэлектрического плоского выходного зеркала с коэффициентом пропускания 10% для длин волн основных переходов молекулы СО. Лазер использовался в режиме неселективной непрерывной генерации с мощностью до ~1 Вт. Спектр излучения лазера, измеренный с помощью спектрографа ИКС-31, состоял из 15 линий в диапазоне 5.1-5.6 мкм (см. рис.1). Все результаты, представленные в разд.4.2, были получены с данными характеристиками лазера.

Для контроля мощности СО-лазера часть его излучения (~5%) с помощью плоскопараллельной пластинки из CaF₂ направлялась на сферическое зеркало 2 (R = 1 м) и фокусировалось на измеритель мощности Ophir-3A. Оставшееся излучение направлялось на сферическое зеркало 3 (R = 1 м), с помощью которого излучение фокуси-

Рис.8. Оптическая схема для исследования электрооптической модуляции излучения СО-лазера.

ровалось на фотодетектор PEMI-10.6 (временное разрешение 1 нс). На его пути устанавливались скрещенные ИК поляризатор П и анализатор А, а между ними – электрооптическая ячейка на кремниевых подложках, между которыми находился слой СЖК. С помощью осциллографа Rigol DS1054Z регистрировались зависимости подаваемого на ячейку напряжения и сигнала с фотодетектора от времени.

4.2. Временные характеристики промодулированного излучения СО-лазера

Разработанный нами и используемый в настоящей работе СЖК-497 обеспечивает возможность бистабильной электрооптической модуляции излучения (при условии формирования технологическими методами двуосного поверхностного потенциала границы раздела жидкого кристалла и твердых подложек ячейки [30]). Под бистабильностью понимается сохранение ориентаций директора + *п* и – *п* (см. рис.2), а следовательно, и состояний поляризации прошедшего через слой СЖК излучения после выключения импульса управляющего напряжения. Для наблюдения и практического использования эффекта бистабильности необходимо прикладывать к электрооптическому модулятору трехуровневое прямоугольное напряжение [31]. На рис.9 представлены зависимости приложенного трехуровневого напряжения и оптического пропускания СЖК-ячейки, рассчитанного с учетом максимального пропускания ячейки при нулевом приложенном напряжении, от времени при частоте $f = 1.2 \ \kappa \Gamma \mu$. В приведенном примере длительность Δt_1 импульсов управляющего напряжения составляет около 100 мкс, а временной интервал Δt_2 между импульсами – около 300 мкс, в течение которых светопропускание ЖКЯ (и состояние поляризации излучения) не меняется, разогрева ЖКЯ не происходит, а тепло отводится, что позволяет минимизировать разогрев ЖКЯ токами переполяризации.

В приведенном примере ЖКЯ практически не нагревается (см. рис.7), ее рабочая температура составляет около 25 °C при температуре окружающей среды 23 °C, т.е. при бистабильном режиме электрооптической модуляции теплоотвод достаточно легко осуществляется благодаря временным интервалам между импульсами прило-

Рис.9. Зависимости от времени напряжения *U*, приложенного к электрооптической ЖКЯ, и пропускания модулятора излучения CO-лазера при $\beta = 0$. Амплитуда прикладываемого напряжения 72 В ($E_0 = 3.6$ В/мкм), его частота 1.2 кГц. Толщина *d* слоя СЖК-497 в ЖКЯ 20 мкм. Время включения светопропускания $\tau_{on} =$ 44 мкс, время выключения $\tau_{off} = 40$ мкс.

женного напряжения. При 25°С угол наклона директора в смектических слоях $\theta \approx 32^{\circ}$ (рис.6.*a*). Однако при бистабильной работе модулятора термодинамически равновесные значения углов φ_1 и φ_2 (см. рис.2), согласно работе [30], определяются параметрами двуосного поверхностного потенциала границ раздела слоя СЖК и подложек ячейки. Расчеты по методике [30] дают оценку $\varphi_1 \approx 35^\circ$, а $\varphi_2 \approx 145^\circ$ для исследуемой ячейки. Следовательно, в соответствии с соотношением (2) $\alpha \approx 44.8^{\circ}$; этот расчет находится в хорошем согласии с прямыми экспериментальными измерениями угла α . Используя значения d = 20 мкм и $\Delta n = 0.131$ при $\lambda = 5.25$ мкм (см. рис.3), рассчитана разность фаз обыкновенной и необыкновенной волн $\Delta \Phi$ = $2\pi\Delta nd/\lambda \approx \pi$. Следовательно, рассматриваемый электрооптический модулятор является полуволновой пластинкой (для длины волны $\lambda = 5.25$ мкм), которая поворачивает плоскость поляризации падающего света, оставляя свет плоскополяризованным.

На рис.10 приведены зависимости приложенного знакопеременного двухуровневого напряжения и оптического пропускания ЖКЯ от времени при частоте напряжения $f = 10 \,\mathrm{k\Gamma}$ ц. Толщина d слоя СЖК-497 в ЖКЯ в данном случае равна 10 мкм. При этих условиях измеренная величина спонтанной поляризации составляет 48 нКл/см², что, согласно температурной зависимости спонтанной поляризации $P_{\rm s}(T)$ (см. рис.6, δ), соответствует температуре слоя жидкого кристалла 54 °C. При этой температуре угол наклона директора в слоях $\theta \approx 22.4^{\circ}$ (см. рис.6,a).

Под действием приложенного двухуровневого напряжения (см. рис.10) азимутальные углы ориентации директора (и оптической оси) негеликоидального СЖК-497 изменяются в электрическом поле между $\varphi_1 = 0$ при $+E_0$ и $\varphi_2 = \pi$ при $-E_0$, как показано на рис.2, справа. В соответствии с соотношением (2) это означает, что в данном случае $\alpha = 2\theta \approx \pi/2$. Используя значения d = 10 мкм, $\Delta n \approx 0.131$ при $\lambda = 5.25$ мкм (рис.6), оценим разность фаз $\Delta \Phi$ между обыкновенной и необыкновенной волнами: $\Delta \Phi = 2\pi \Delta n d/\lambda \approx 0.5\pi$.

Подставив полученные значения α и Δn в формулу (1), можно утверждать, что в данном случае при $\beta = 0$ модулятор является электроуправляемой четвертьволновой пластинкой, которая преобразует плоскополяризованное излучение в циркулярно-поляризованное на длине волны $\lambda = 5.25$ мкм (см. рис.3). Необходимо подчеркнуть, что при использовании приложенного двухуровневого на-

Рис.10. Зависимости от времени напряжения *U*, приложенного к ЖКЯ, и пропускания модулятора излучения СО-лазера при $\beta = 0$. Амплитуда прикладываемого напряжения 80 В ($E_0 = 8$ В/мкм), его частота 10 кГц. Толщина СЖК-слоя 10 мкм. Время включения/выключения светопропускания $\tau = 17 \pm 1$ мкс.

пряжения вывод модулятора в режим электроуправляемой четвертьволновой пластинки осуществляется за счет его контролируемого разогрева токами переполяризации. Таким образом, в зависимости от задачи возможно использование как двухуровневого (рис.10), так и трехуровневого (рис.9) знакопеременного напряжения для управления параметрами термически устойчивой электрооптической модуляции в среднем ИК диапазоне.

Максимальное значение светопропускания модулятора, расположенного между скрещенными поляризатором и анализатором при $\beta = 0$, рассчитанное по формулам (1) и (3) с учетом френелевских отражений, для случая идеальной четвертьволновой пластинки должно быть равно 0.155, а измеренное значение составляет 0.145 (см. рис.10). Отмеченное расхождение в 7% между теорией и экспериментом можно объяснить полихроматическим излучением, использованным в эксперименте (рис.1), а также ошибками эксперимента и имеющимися дефектами структуры СЖК в электрооптической ячейке. Вместе с тем плотность этих дефектов, которые нам не удалось визуализировать из-за отсутствия в нашем распоряжении соответствующего оборудования, вряд ли может быть высокой, т.к. измеренное по осциллограмме электрооптического отклика (рис.10) контрастное отношение достигает значения 25:1. Этот результат косвенно свидетельствует о приемлемом оптическом качестве слоя СЖК-497 в электрооптическом модуляторе среднего ИК диапазона.

Наименьшие значения времени включения/выключения τ светопропускания в ЖКЯ с толщиной слоя СЖК-497 d = 20 мкм были получены при использовании знакопеременного двухуровневого напряжения (рис.11). В таком варианте удалось довести частоту модуляции f до 20 кГц, а амплитуду подаваемого на ячейку напряжения U_{0P} до 110 В ($E_0 = 5.5$ В/мкм). При этом время включения/ выключения светопропускания $\tau = 4.0 \pm 0.6$ мкс.

Наименьшие значения времени включения/выключения τ светопропускания в ЖКЯ с толщиной слоя СЖК-497 d = 10 мкм также были получены при использовании знакопеременного двухуровневого напряжения (рис.12). При этом удалось довести частоту модуляции f до 40 кГц, а амплитуду подаваемого на ячейку напряжения U_{0P} до 150 В ($E_0 = 15$ В/мкм). В таком варианте получено время включения/выключения $\tau = 1.4 \pm 0.1$ мкс.

Рис.11. Зависимости от времени напряжения *U*, приложенного к электрооптической ЖКЯ, и пропускания модулятора излучения CO-лазера при $\beta = 45^{\circ}$. Амплитуда прикладываемого напряжения 110 В ($E_0 = 5.5$ В/мкм), его частота 20 кГц. Толщина *d* слоя СЖК-497 в ЖКЯ 20 мкм. Время включения/выключения светопропускания $\tau = 4.0 \pm 0.6$ мкс.

Рис.12. Зависимости от времени напряжения *U*, приложенного к электрооптической ЖКЯ, и пропускания модулятора излучения CO-лазера при $\beta = 45^{\circ}$. Амплитуда прикладываемого напряжения 150 В ($E_0 = 15$ В/мкм), его частота 40 кГц. Толщина слоя СЖК-497 в ЖКЯ d = 10 мкм. Время включения/выключения светопропускания $\tau = 1.4 \pm 0.1$ мкс.

Важной характеристикой электрооптического модулятора является контрастное отношение, позволяющее оценить глубину модуляции, которое мы рассчитывали как отношение максимального пропускания модулятора излучения СО-лазера к минимальному (см. рис.9-12). Для ячейки толщиной 20 мкм контрастное отношение находилось в диапазоне от 15:1 до 25:1 при частотах от 2 до 7.5 кГц, а при увеличении частоты стало спадать, опустившись до 3.5:1 при 20 кГц. Для ячейки толщиной 10 мкм контрастное отношение составляло около 25:1 при частоте до 10 кГц, а при увеличении частоты практически линейно спадало, опустившись до 1.3:1 при 40 кГц. Более низкое контрастное отношение для ячейки толщиной 10 мкм мы связываем с тем, что без подачи напряжения ее светопропускание в диапазоне генерации СОлазера отличалось в 3.5 раза при повороте ячейки на 45°, тогда как максимальное и минимальное светопропускание ячейки толщиной 20 мкм в тех же условиях отличалось в 10 раз.

5. Заключение

Разработаны широкоапертурные (световая апертура 2.5 см²) жидкокристаллические электрооптические модуляторы излучения среднего ИК диапазона, позволяющие в килогерцевом диапазоне частот управлять состоянием поляризации излучения лазера на окиси углерода в диапазоне длин волн 5.1–5.6 мкм. В качестве рабочей среды этих модуляторов выбран негеликоидальный сегнетоэлектрический жидкий кристалл СЖК-497 (название по внутренней номенклатуре ФИАНа), позволяющий обеспечить эффект бистабильности в электрооптических модуляторах.

Впервые измерена дисперсия двулучепреломления $\Delta n(\lambda)$ сегнетоэлектрического жидкого кристалла в области среднего ИК диапазона длин волн. Показано, что в спектральной области излучения СО-лазера эта дисперсия является аномальной, а значения Δn в среднем ИК диапазоне сопоставимы с таковыми в видимой области спектра.

Для решения вопроса о минимизации нагрева модулятора в процессе его работы за счет диэлектрических потерь теоретически решена и экспериментально исследована стационарная тепловая задача. В результате, для минимизации нагрева модулятора предложено использовать знакопеременное прямоугольное трехуровневое напряжение. Это стало возможным благодаря эффекту бистабильности в электрооптических модуляторах на основе СЖК-497. Кроме того, определены дополнительные возможности и ограничения на термическую стабильность, возникающие при использовании знакопеременного двухуровневого прямоугольного управляющего напряжения.

Показано, что использование СЖК в качестве электрооптической среды позволяет обеспечить термически устойчивую электрооптическую модуляцию излучения СО-лазера с частотой от 1 до 10 кГц при контрастном отношении от 15:1 до 25:1. При этом реализуются режимы электроуправляемых полуволновой и четвертьволновой пластинок с временами переключения состояний поляризации излучения от 17 до 44 мкс, а также возможность запоминания полученных состояний поляризации после выключения управляющего напряжения.

Наименьшие значения времени включения/выключения модулятора были получены при использовании знакопеременного двухуровневого напряжения. Для ЖКЯ толщиной d = 20 мкм они составили ~4.0 ± 0.6 мкс при частоте модуляции 20 кГц, а для ЖКЯ толщиной d = 10 мкм – около 1.4 ± 0.1 мкс при частоте модуляции 40 кГц.

Работа выполнена в рамках Государственного задания ФИАН – FFMR-2024-0009 –Тема 2 – Фундаментальные проблемы физики лазерных, плазменных, электромагнитных и оптоэлектронных процессов для развития фотоники, лазерного термоядерного синтеза, ускорения заряженных частиц, информационных и биомедицинских технологий (подпункт – разработка лазерных систем среднего и дальнего ИК диапазонов на основе молекулярных газовых лазеров и методов нелинейной оптики) и Государственного задания ИНЭОС РАН № 075-00277-24-00 Министерства науки и высшего образования РФ.

- Shi C., Ermold M., Oulundsen G., Newman L. Proc. SPIE, 10911, 109110M (2019).
- Mineev A.P., Nefedov S.M., Pashinin P.P., et al. *Proc. SPIE*, 7994, 799402 (2011).
- Игнатов Н.А., Огарь М.А., Минеев А.П., Нефёдов С.М. Успехи современной радиоэлектроники, № 2, 145 (2016) [J. Achievements of Modern Radioelectronics, (2), 145 (2016)].
- Ionin A.A., Ionin M.V., Kinyaevskiy I.O., Klimachev Y.M., Kozlov A.Yu., Rulev O.A., Sinitsyn D.V. Opt. Quantum Electron., 55, 763 (2023).
- Ionin A.A., Klimachev Yu.M., Kotkov A.A. Kozlov A.Yu., Rulev O.A., Sinitsyn D.V., Ionin M.V. *Infrared Phys. Technol.*, **120**, 103921 (2022).
- Rosenthal P., Müller D., Oulundsen G. (2019); https://www. laserfocusworld.com/industrial-laser-solutions/article/14221544/colasers-benefit-via-drilling-and-wafer-debonding.
- Oriekhov T., Harvey C.M., Mühlberger K., Fokine M. J. Opt. Soc. Am. B, 38, 130 (2021).
- Harvey C.M., Mühlberger K., Oriekhov T., Maniewski P., Fokine M. J. Opt. Soc. Am. B, 38, 122 (2021).
- Ionin A.A., Ionin M.V., Klimachev Yu.M., Kozlov A.Yu., Rulev O.A., Sinitsyn D.V. *Infrared Phys. Technol.*, 133, 104842 (2023).
- Ионин А.А., Ионин М.В., Климачев Ю.М., Козлов А.Ю., Синицын Д.В., Рулев О.А. Изв. вузов. Приборостроение, 66, 789 (2023) [J. of Instrument Engineering, 66, 789 (2023)].
- Ionin A., in *Gas Lasers*. M.Endo, R.F. Walter (Eds) (Boca Raton: CRC Press, 2007, p. 201).
- Ionin A.A., Kinyaevskiy I.O., Klimachev Y.M., Kotkov A.A., Kozlov A.Y. *Opt. Lett.*, **42**, 498 (2017).
- Ionin A.A., Kurnosov A.K., Napartovich A.P., Seleznev L.V. Laser Phys., 20, 144 (2010).

- Ионин А.А., Климачев Ю.М., Козлов А.Ю., Котков А.А., Курносов А.К., Напартович А.П., Рулев О.А., Селезнев Л.В., Синицын Д.В., Хагер Г., Шнырев С.Л. Квантовая электроника, 36, 1153 (2006) [Quantum Electron., 36, 1153 (2006)].
- Puerta J., Herrmann W., Bourauel G., Urban W. Appl. Phys., 19, 439 (1979).
- Андреев Ю.М., Ионин А.А., Киняевский И.О., Климачёв Ю.М., Козлов А.Ю., Котков А.А., Ланский Г.В., Шайдуко А.В. Квантовая электроника, 43, 139 (2013) [Quantum Electron., 43, 139 (2013)].
- Ионин А.А., Киняевский И.О., Климачев Ю.М., Козлов А.Ю., Котков А.А., Сагитова А.М., Селезнев Л.В., Синицын Д.В., Рулев О.А. ЖПС, 89, 443 (2022) [J. Appl. Spectrosc., 89, 613 (2022)].
- https://www.coherent.com/content/dam/coherent/site/en/resources/ datasheet/lasers/COHR_DiamondCx-10LQS_DS_0118_3.pdf.
- 19. Tian Zh., Hussein B., Wang Q. Opt. Eng., 44, 024202 (2005).
- Ionin A.A., Kochetkov Yu.V., Kozlov A.Yu., Mokrousova D.V., Seleznev L.V., Sinitsyn D.V., Sunchugasheva E.S., Zemtsov D.S. *Laser Phys. Lett.*, 14, 055001 (2017).
- Ionin A.A., Kinyaevskiy I.O., Klimachev Yu.M., Kozlov A.Yu., Rulev O.A., Sagitova A.M., Seleznev L.V., Sinitsyn D.V. *Appl. Phys. B*, **124**, 173 (2018).
- Meyer R.B., Libert L., Strzelecki L., Keller P.J. Phys. Lett., 36, L-69 (1975).
- Береснев Л.А., Блинов Л.М. УФН, 143, 391 (1984) [Phys. Usp., 27, 492 (1984)].
- Pozhidaev E.P., Torgova S.I., Barbashov V.A. J. Mol. Liq., 367, 120493 (2022).
- Пожидаев Е.П., Кузнецов А.В., Казначеев А.В., Торгова С.И., Ткаченко Т.П. Жидкие кристаллы и их практическое использование, 23, 94 (2023) [Liquid Crystals and their Application, 23, 94 (2023)].
- Zhukov A.A., Pozhidaev E.P., Bakulin A.A., Babaevskii P.G. Crystallogr. Rep., 51, 680 (2006).

- Кузнецов А.В., Жукович-Гордеева А.А., Смирнов Н.А., Пожидаев Е.П. Кр. сообщ. физ. ФИАН, 50 (5), 3 (2023) [Bull. Lebedev Phys. Inst., 50 (5), 159 (2023)].
- Tkachenko T.P., Zhukov A.A., Torgova S.I., Pozhidaev E.P. Crystallogr. Rep., 68, 1222 (2023).
- Береснев Л.А., Байкалов В.А., Блинов Л.М., Пожидаев Е.П., Пурванецкас Г.В. Письма в ЖЭТФ, 33, 553 (1981) [JETP Lett., 33, 536 (1981)].
- Kaznacheev A., Pozhidaev E., Rudyk V., Emelyanenko A.V., Khokhlov A. *Phys. Rev. E*, 97, 042703 (2018).
- 31. Pozhidaev E.P., Chigrinov V.G. Crystallogr. Rep., 51, 1030 (2006).
- Pozhidaev E., Torgova S., Barbashov V., Kesaev V., Laviano F., Strigazzi A. Liq. Cryst., 46 (6), 941 (2018).
- 33. Островский Б.И., Чигринов В.Г. Кристаллография, 25, 322 (1980).
- 34. Xue J.-Z., Handshy M.A., Clark N.A. Ferroelectrics, 73, 305 (1987).
- Пожидаев Е.П., Осипов М.А., Чигринов В.Г., Байкалов В.А., Блинов Л.М., Береснев Л.А. ЖЭТФ, 94, 125 (1988) [JETP, 67, 283 (1988)].
- Ахманов С.А., Никитин С.Ю. Физическая оптика: Учебник, 2-е изд. (М.: Изд-во МГУ, Наука, 2004).
- 37. https://refractiveindex.info/?shelf=main&book=BaF2&page=Li.
- Yin Y., Shiyanovskii S.V., Lavrentovich O.D. J. Appl. Phys., 100, 024906 (2006).
- 39. Panov V., Vij J.K., Shtykov N.M. Liq. Cryst., 28, 615 (2001).
- Пикин С.А. Структурные превращения в жидких кристаллах (М.: Наука, 1981, с. 336).
- Шелудяк Ю.Е., Кашпоров Л.Я., Малинин Л.А., Цалков В.Н. Теплофизические свойства компонентов горючих систем (М.: НПО Информ ТЭИ, 1993).
- Ahlers G., Cannell D.S., Berge L.I., Sakurai S. Phys. Rev. E, 49, 545 (1994).
- Vetoshkin S., Ionin A., Klimachev Yu., Kotkov A., Kozlov A., Rulev O., Seleznev L., Sinitsyn D. J. Russ. Laser Res., 27, 33 (2006).